

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

BRIDGING TO HIGHER DIPLOMA

END OF SEMESTER EXAMINATIONS

MAY 2010 SERIES

EB 2211 - STRENGTH OF MATERIALS II

TIME: 2 HOURS

Instructions to Candidates

You should have the following:

- Answer booklet
- Pocket Calculator

This paper consists of **FIVE** Questions in **TWO** Section **A** and **B**. Answer Question **ONE** in Section **A** and choose any other **TWO** from Section **B**. Maximum marks for each part of a question are as shown.

SECTION A - COMPULSORY

Question ONE

(a).	State the assumptions made in simple bending.	(8 Marks)
(b).	Show the distribution of shear stress is $T = QA \bar{y} - bI$.	(15 Marks)
(c).	State the stability conditions of a dam.	(7 Marks)

SECTION B Question TWO

- (a). Calculate the maximum horizontal shear stress in the beam shown in Figure 1. The beam is subjected to a vertical shear force of 120KN.
 (16 Marks)
- (b). Sketch the shear stress variation diagram for the section. (4 Marks)

Fig. 1

Question THREE

A horizontal cantilever 1.25m long has a T-shaped cross-section as shown in Fig.2. The beam carries a uniformly distributed load along the full length of the top flange. Calculate the greatest intensity of the load which can be carried. Assume:

- (a). Maximum tensile not to exceed 30N/mm².
- (b). Maximum compressive not exceed 90N/mm².

(20 Marks)

◀

150mm

12*mm*]

150mm

12*mm*

(20 Marks)

Question FIVE

Question FOUR

Figure 3 shows a retaining wall 3.6m high, retaining earth of 15KN/m³ density and angle of repose 30°. The wall is subjected to superimposed load of 7.5KN/m². Calculate the overturning moment on the wall about the base per metre run of wall by:

Constructing the pressure diagram for the wall.

(20 Marks)

