

TECHNICAL UNVERSITY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

UNIVERSITY EXAMINATION FOR DEGREE IN:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSME Y2 S1)

EEE 2203: MATERIAL SCIENCE II

END OF SEMESTER EXAMINATION SERIES: AUGUST 2014 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Attempt any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **TWO** printed pages

Question One

a)	With the aid of diagrams,	outline the major :	steps in the maki	ng of a printed	circuit board (PCB).
----	---------------------------	---------------------	-------------------	-----------------	----------------------

- b) Explain the functions of the following:
 - (i) Resist
 - (ii) Substrate
 - (iii) Aligner
 - (iv) Mask
 - (v) Energy

(7 marks)

(7 marks)

c) Define lithography. Briefly explain how the process is conducted in a PCB making. (6 marks)

Page 1

Question Two

a)	Explain Drudes model of metal conduction.	(6 marks)				
b)	$\Omega^{-1}m^{-1}$ A wire sample of annealed copper alloy of conductivity 58.0 x 106 and 1.5r by 1.5m in length is placed in an electrical circuit. A voltage drop of 450mV is mer length of the wire it carries a 10A current. Calculate the conductivity of this alloy.	nm in a diameter asured across the (6 marks)				
c)	(i) With the aid of a diagram show the variation in electrical resistivity with large composition. (ii) If the temperature coefficient of resistivity for copper allow at 20°C is $0.00393^{\circ}C^{-1}$ and the $\Omega^{-1}m^{-1}$					
	resistivity at 20°C is 23.4 x 10 ⁻⁹ determine resistivity at 100°C.	(8 marks)				
Qu	Question Three					
a)	 For the following conductors, provide two material choices: (i) Contact metals (ii) Fuse metals (iii) Electrical resistance (iv) Non corroding contacts 	(4 marks)				
		(1 1111110)				
b)	Distinguish the conduction among the following: (i) Electrolytes	(6 marks)				
	(ii) Semiconductors (iii) Metals	(6 marks)				
c)	Explain FOUR factors that affect conductivity in metals.	(6 marks)				
d)	With the aid of diagrams, explain superconductivity	(4 marks)				
Question Four						
a)	Using the concept of electronic bands, explain the difference in conduction in insulator semiconductor or conductors. (4 marks)					
b)) A phosphorus doped (n-type) silicon, the Fermi level (E_F) is shifted 0.1Ev. What is the proba an electron being thermally promoted the conduction band in silicon (Eg = 1.10eV) temperature (25°C)? Take k = 86.2 x 10 ⁻⁶ eVk ⁻¹) (6 mark					
c)	(i) Explain THREE ways with which the conduction of silicon can be improved.					
	(ii) Provide FOUR examples of compound semi-conductor.	(10 marks)				
Question Five						
a)	Clearly distinguish the THREE types of magnetism. For each give an example.	(9 marks)				

b) Explain "Antiferromagnetism" in materials.

© 2014 – Technical University of Mombasa

(2 marks)

c) State TWO uses of Hard Magnets

(2 marks)