TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
CERTIFICATE IN INFORMATION COMMUNICATION TECHNOLOGY \& MAINTENANCE (CICM 14S)

AMA 1152: MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: DECEMEBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the term 'Naperian Logarithms'
b) Transpose the formula to make f the subject:

$$
\frac{R}{r}=\sqrt{\frac{f+p}{f-p}}
$$

$$
5 x^{2}+12 x+3=0
$$

c) Derive the quadratic formula and hence solve for x in the following equation.
d) Solve the 3 unknowns in the following set of equations:

$$
\begin{aligned}
& 3 x+2 y-z=19 \\
& 4 x+y+2 z=4 \\
& 2 x+4 y-5 z=32
\end{aligned}
$$

e) Solve the following by completing the square:

$$
4 x^{2-} 16 x+3=0
$$

f) Linearize the following:

$$
y=a x^{n}
$$

g) Differentiate the following and give an example of each:

- Symmetric and skew-symmetric matrices.

Question Two

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 1 & 5 \\
6 & 0 & 2
\end{array}\right) \quad|A|
$$

a) Given the matrix find

And hence find A^{-1}
b) Solve for x in the following equation:

$$
\frac{x+2}{2}-\frac{x+5}{3}=\frac{2 x-5}{4}+\frac{x+3}{6}
$$

$$
A=\left(\begin{array}{ll}
2 & 1 \\
4 & 0
\end{array}\right), B=\left(\begin{array}{ll}
2 & 7 \\
0 & 1
\end{array}\right)
$$

c) Given that find
(i) A 2

> (3 marks)
(ii) $\mathrm{A}+2 \mathrm{~B}$
(iii) Predict the order of $\mathrm{A} \times \mathrm{A} \times 3 \mathrm{~B}$

Question Three

a) Solve the following set of equations using Gaussian elimination method:

$$
\begin{aligned}
& x_{1}-4 x_{2}-2 x_{3}=21 \\
& 2 x_{1}+x_{2}+2 x_{3}=3 \\
& 3 x_{1}+2 x_{2}-x_{3}=-2
\end{aligned}
$$

(8 marks)

b) Solve the equation below:

$$
\begin{equation*}
5.4^{x+3} \times 8.2^{2 x-1}=4.8^{3 x} \tag{4marks}
\end{equation*}
$$

c) Solve the following pair of equations:

$$
\begin{align*}
& 2(x+2 y)+3(3 x-y)=38 \\
& 4(3 x+2 y)-3(x+5 y)=-8 \tag{4marks}
\end{align*}
$$

d) A girl lying at the top of a cliff, 120 migh sees two rocks whose angles of depression are 10° and 30°. If the rocks are in line with the foot of the cliff, find the distance between the works.
(4 marks)

Question Four

a) A boy 120 cm tall, is standing 50 m from a flag post on a level ground. He finds that the angle of elevation to the top of the flag post is 15°. Calculate the height of the flag post.
(2 marks)
b) Show that the following equation holds:

$$
\begin{aligned}
& \frac{2-\cos ^{2} x=1}{1+\sin ^{2} x} \\
& \sin ^{2}(x)+\cos ^{2}(x)=1
\end{aligned}
$$

c) Show that and hence derive the subsequent trigonometric identities.
(8 marks)
d) Find the x and y intercept of the line with equation
e) Derive the cosine rule.

Question Five

a) Rewrite the following without logarithms:

$$
\begin{equation*}
\log w=2(\log A+\log W)-(\log 32+2 \log \pi+2 \log r+\log C) \tag{1mark}
\end{equation*}
$$

(i)
$\log S=\log K-\log 2+2 \log \pi+2 \log n+\log y+\log r+2 \log L-2 \log h-\log g$
(ii)

$$
\ln I=\ln (2 x)-\{\ln (K R+r)-\ln K+K L)
$$

(iii)
b) Find the equation of the line passing through the points (4, 5), (8, 7)
c) State whether or not the following can each be expressed as a product of linear factors:

$$
x^{2}-19+18=0
$$

(i)

$$
\begin{equation*}
2 x^{2}+11 x+28=0 \tag{1mark}
\end{equation*}
$$

(ii)

$$
x^{2}+5 x-24=0
$$

(iii)

$$
x^{2}+4 x-21=0
$$

(iv)

$$
x 2-9 x+18=0
$$

(v)
d) A metallic pipe 12 m long is leaning against a vertical wall, with its foot 3 m from the wall.
(i) Find the angle the pipe makes with the horizontal
(ii) Find the height of the wall where the pipe reaches.
e) Simplify without using tables:
$\tan 30^{\circ} \sin 60^{\circ}$
(i)

$$
\frac{\cos 30^{\circ}}{\tan 30^{\circ}}
$$

(ii)
(2 marks)
f) Solve for x if:

$$
3^{x}=243
$$

$$
\begin{equation*}
2^{x-1}=\frac{32}{\sqrt{2}} \tag{i}
\end{equation*}
$$

(ii)

$$
x^{-3 / 4}=27
$$

(iii)

