

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF MATHEMATICS & PHYSISCS

DIPLOMA IN NEUTICAL SCIENCE (DNSC 13M)

AMA 2113: MATHEMATICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

<u>Instructions to Candidates:</u> You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One (Compulsory)**

$$\log_{10} 3 = 0.4771, \log_{10} 2 = 0.010$$
a) If $\log_{10} 60$ (i)
 $\log_{10} 15$ (ii) (B marks)
b) Use logarithms table to evaluate:

$$\frac{2347 \times 0.4666}{\sqrt[3]{0.0924}}$$
(i) (4 marks)
(ii) $\frac{34.33}{\sqrt{5.25 \times 0.042}}$ (4 marks)
(iii) $\frac{(0.0056)^{\frac{1}{2}}}{1.38 \times 27.42}$ (4 marks)
Question Two
a) Solve for such that $0 \le \theta \le 360^{\circ}$ and $2\sin^2 \theta + \sin 2\theta - 1 = 0$ (5 marks)
b) For the following trigonometric graphs, state the wavelength, amplitude and phase angles:
 $-2y = 3\cos[x + 30^{\circ}]$ (3 marks)
 $y = -\sin(3x + 60^{\circ})$ (3 marks)
 $y = 3\cos[x + 40^{\circ}]$ (3 marks)
 $y = 3\cos[x + 40^{\circ}]$ (3 marks)
 $r = \left(\frac{1}{2}, \frac{2}{-1}\right)$
c) Determine the inverse T⁻¹ of the Matrix
 $x + 2y = 7$ Hence find the coordinates of the point at which
 $x + 2y = 7$ the two lines and $x - y = 1$ intersect. (7 marks)

Question Three

a)	$y = 3\cos(2\theta + 30)^{\circ}$ θ O° The values of from to 180° taking the	interval of 30°. (5 marks)
b)	Use your graph to solve: $3\cos(2\theta + 30)^{\circ} = -1$ (i) $\cos(2\theta + 30)^{\circ} = \frac{-2}{3}$	
	(ii) $y = 3\cos(2\theta + 30)^{\circ}$	(3 marks)
c)	State the phase angle and wavelength of	(2 marks)
d)	PQRS is a trapezium where PQ is parallel to SR PR and SR intersect at x so that SR q s q	X = kSQ and Px =
	hPR where k and h are constants. Vectors $PQ = 3$ and $PS = SR = .$ (i) Show this information on a diagram	
	(ii) Express vector in terms of and Q S	
	(iii) Express SX in terms of K, and $h Q S$	
	 (iv) Express SX in terms of , and (v) Obtain h and k (vi) In what ratio does X divide SQ? 	(10 marks)
Qu	iestion Four	
a)	$S = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ If and find:	
u)	i. S^2 ii. 2ST iii. S(S+T)	(2 marks) (2 marks) (3 marks)
b)	(i) Construct a table of values for the function $y = x^2 - x - 6$ $-2 \le x \le 3$ for	(3 marks)
	(ii) Draw the graph of the function $y = x^2 - x - 6$ $-2 \le x \le 4$ for	(4 marks)
		$x^2 - 2x - 2 = 0$
	(iii) By drawing a suitable line on the same grid, estimate the roots of the equation $\theta = \sin(\theta + 20^\circ) = (\cos 3\theta + 30^\circ)$	(3 marks)
c)	$\theta = \sin(\theta + 20^\circ) = (\cos 3\theta + 30^\circ)$ Solve for given that	(3 marks)

Question Five

- a) Calculate the length of a tangent to a circle of radius 4cm from a point P, 7cm from the centre of the circle.
 (3 marks)
- **b)** (i) An arc of length 24cm subtends an angle of 60° at the center of a circle. Calculate the diameter of $\pi = 3.142$ the circle. (Take) (4 marks)
 - (ii) Given that a chord subtends 80o at the center of a circle radius 4.2cm. Calculate the length of the chord. (4 marks)
- c) Three trees A, B and C at Mt Kenya Forest are such that AC = 10km, $BAC = 40^{\circ}$ and $BCA = 30^{\circ}$, calculate:
 - (i) AB
 - (ii) BC

(9 marks)