
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN NEUTICAL SCIENCE (DNSC 13M)
AMA 2113: MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
$\log _{10} 3=0.4771, \log _{10} 2=0.010$
a) If , obtain the following without using tables:

$$
\log _{10} 60
$$

(i)

$$
\log _{10} 15
$$

(ii)
b) Use logarithms table to evaluate:

$$
\frac{2347 \times 0.4666}{\sqrt[3]{0.0924}}
$$

(i)

$$
\frac{34.33}{\sqrt{5.25 \times 0.042}}
$$

(ii)

$$
\frac{(0.0056)^{1 / 2}}{1.38 \times 27.42}
$$

(iii)

Question Two

$$
\theta \quad 0 \leq \theta \leq 360^{\circ} \quad 2 \sin ^{2} \theta+\sin 2 \theta-1=0
$$

a) Solve for such that and
b) For the following trigonometric graphs, state the wavelength, amplitude and phase angles:

$$
-2 y=3 \cos \left(x+30^{\circ}\right)
$$

i.

$$
y=-\sin \left(3 x+60^{\circ}\right)
$$

ii.

$$
y=3 \cos \left(x+40^{\circ}\right)
$$

iii.

$$
T=\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)
$$

c) Determine the inverse T^{-1} of the Matrix

$$
x+2 y=7
$$

the two lines and $\mathrm{x}-\mathrm{y}=1$ intersect.

Question Three

$$
y=3 \cos (2 \theta+30)^{\circ} \quad \theta \quad O^{\circ}
$$

a) Draw the graph of for the values of from to 180° taking the interval of 30°.
(5 marks)
b) Use your graph to solve:

$$
3 \cos (2 \theta+30)^{\circ}=-1
$$

(i)

$$
\cos (2 \theta+30)^{\circ}=\frac{-2}{3}
$$

(ii)

$$
y=3 \cos (2 \theta+30)^{\circ}
$$

c) State the phase angle and wavelength of
d) PQRS is a trapezium where PQ is parallel to $\mathrm{SR} \operatorname{PR}$ and SR intersect at x so that $\mathrm{SX}=\mathrm{kSQ}$ and $\mathrm{Px}=$ hPR where k and h are constants. Vectors $\mathrm{PQ}=3 \stackrel{\underset{\sim}{q}}{\sim}$ and $\mathrm{PS}=\stackrel{\sim}{\sim}{ }^{s} \mathrm{SR}=\stackrel{\sim}{\sim}$.
(i) Show this information on a diagram
$\overrightarrow{S Q} \quad \underset{\sim}{s} \quad \underset{\sim}{q}$
(ii) Express vector in terms of and
Q $\quad S$
(iii) Express SX in terms of K , and
$\underset{\sim}{h} \quad \underset{\sim}{S}$
(iv) Express SX in terms of , and
(v) Obtain h and k
(vi) In what ratio does X divide SQ ?

Question Four

$$
S=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \quad T=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)
$$

a) If and find:
i. $\quad S^{2}$
ii. 2ST
iii. $\quad S(S+T)$
b) (i) Construct a table of values for the function $y=x^{2}-x-6$ for $-2 \leq x \leq 3$
(ii) Draw the graph of the function $y=x^{2}-x-6$ for $-2 \leq x \leq 4$
(iii) By drawing a suitable line on the same grid, estimate the roots of the equation

$$
\theta \quad \sin \left(\theta+20^{\circ}\right)=\left(\cos 3 \theta+30^{\circ}\right)
$$

c) Solve for given that

Question Five

a) Calculate the length of a tangent to a circle of radius 4 cm from a point $\mathrm{P}, 7 \mathrm{~cm}$ from the centre of the circle.
(3 marks)
b) (i) An arc of length 24 cm subtends an angle of 60° at the center of a circle. Calculate the diameter of $\pi=3.142$ the circle. (Take)
(ii) Given that a chord subtends 80 o at the center of a circle radius 4.2 cm . Calculate the length of the chord.
(4 marks)
c) Three trees A, B and C at Mt Kenya Forest are such that $\mathrm{AC}=10 \mathrm{~km}, \quad \angle \mathrm{BAC}=40^{\circ}$ and $\angle \mathrm{BCA}=30^{\circ}$, calculate:
(i) AB
(ii) BC
(9 marks)

