

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

Faculty of Engineering & Technology

DEPARTMENT OF CIVIL AND BUILDING ENGINEERING

HIGHER DIPLOMA IN BUILDING AND CIVIL ENGINEERING (HD 09)

END OF COURSE EXAMINATIONS

APRIL/MAY 2010 SERIES

HYDROLOGY

TIME: 2 HOURS

Instructions to Candidates

This paper consists of **FIVE** questions.

Answer Question **ONE** and any other **TWO** Questions giving your results clearly.

Question ONE

(a).	Briefly describe the process of evapo-transpiration.	(12 Marks)
(b).	Explain SIX factors that affect evaporation.	(12 Marks)

(c). Give the general equation for the total evaporation and explain the terms used. (6 Marks)

Question TWO

- (a). (i). State Darcy's equation and explain the terms. (2 marks)
 - (ii). State the importance of the extension of Darcy's law to ground water flow. (3 marks)

(b).

Im *permeable*

Fig. 1

Fig. 2

Figure 1 and Figure 2 shows a cross-section through an aquifer.

Using the information given,

	(i). (ii). (iii).	Calculate the velocity. Calculate the Discharge Calculate Transmisivity	(5 marks) (5 marks) (5 marks)		
Ques	tion T	HREE			
(a).	Define	e the instantaneous unit Hydrograph.	(6 Marks)		
(b).	Define	e the Unit Hydrograph.	(5 Marks)		
(c).	Give t give a	he general discrete equation for the unit hydrograph ar n explanation of the terms used.	nd (3 Marks)		
(d).	Menti assist	on THREE assumptions that give the TUH simple prop- ing in its application.	erties (6 Marks)		
<u>Ques</u>	tion F	OUR			
(a).	A well aquife the wa Assur heigh Calcu	with a radius of 0.5m completely penetrates an uncomposite er with k=30m/day and H=50m. The well is pumped so ater level in the well remains at 40m above the bottom. ning that pumping has essentially no effect on water-ta t at r=500m and that well losses are zero, late the steady-state well-discharge.	fined that ble (10 Marks)		
(b).	Using	; the Gumbel approach with:			
		x = 700 $\overline{x} = 288$ $\Gamma = 113.3$			
	(i).	Calculate the theoretical recurrence interval for a flood flow 700,000 cfs.	(8 Marks)		
	(ii).	Calculate the probability P.	(2 Marks)		
Question FIVE					
(a).	Outlin flood	ne EIGHT commonly accepted measures for reducing damage.	(20 Marks)		

- (b). Define the following terms:
 - (i). Anisotropic,
 - (ii). Transmissivity,
 - (iii). Piezometric surface,
 - (iv). Storage coefficient
 - (v). Transient flow

(10 Marks)