

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN COMMUNITY HEALTH DIPLOMA IN PHARMACEUTICAL TECHNOLOGY

AMA 2101: MATHEMATICS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:

- You should have the following for this examination
 - Answer Booklet
 - Mathematical Tables
 - Scientific Calculator

This paper consist of **FIVE** questions in **TWO** sections **A** & **B**

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

h)	Find given using the quotient rule	(3 marks)
	$\frac{dy}{dx} \qquad y = \frac{\sin x}{\cos x}$	
	(ii)	(2 marks)
g)	Evaluate 8 _{Pc}	(2 marks)
-)	(i) 7_{C_3}	()
f)	Change the base to 10 hence evaluate	(4 marks)
	$\log_{3} 8$	
e)	Factorize and hence solve	(3 marks)
	$10x^2 + 11x - 6 = 0$	
d)	Nake s the subject of	(3 marks)
	$x = \sqrt{\frac{5-a}{5-b}}$	
c)	Solve	(3 marks)
	$\frac{1-5x}{4} - \frac{1(1-3x)}{5} = 7$	(0
b)	$\begin{pmatrix} 2 & 3 \end{pmatrix}$ Find the inverse of	(3 marks)
	$A = \begin{pmatrix} 7 & 5 \\ 2 & 2 \end{pmatrix}$	
	(iii) Solve	(3 marks)
	$2.75^{*} = 7$	(2 marks)
	(ii) Simplify	
	$\left(\frac{27}{2}\right)^{-\frac{2}{3}}$. ,
a)	$16x^2 - 1$ (i) Factorize	(2 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

	(3x-1)(2x+1)		
a)	(i) Expand	(2 marks)	
	(ii) Solve $(3x-1)(2x+1) = 6x + 5$ by factorization	(3 marks)	
		()	
b)	$y = 2x^3 - 3x^2 - 12x$ Find the stationary points of and determine the nature of each.	(3 marks)	
	$\int_{1}^{5} x e^{x} dx$		
c)	Evaluate	(3 marks)	
d)	$y = x^2 - 2x - 3$ $-2 \le x \le 4$ Sketch the graph of for and hence use it to solve: $x^2 - 2x - 3 = 0$		
	(i)	(2 marks)	
	$x^2 - 2x - 5 = 0$ (ii)	(2 marks)	
e)	$x^3 - 2xy^2 + y^2 = 7$ Differentiate	(3 marks)	

Question Three

-		1	
2)	Without using tables or a calculator. Find (i)	$\overline{1+\cos 45^{\circ}}$	(1 marks)
a)		$1 - \cos 30^{\circ}$	(4 marks)
	(::)	$1 + \sin 45^{\circ}$	
	(11)		(4 marks)

b) Solve by Cramer's rule given: x - 3y - 4z = 1

$$x - 3y - 4z = 1$$

- x + y - 3z = 14
y - 3z = 5

(8 marks)

$$A = \begin{pmatrix} k & 4 \\ 3 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Given that and find K given that the determinant of AB = 4 (4 marks)

Question Four

c)

a)

$$coS2A = 2\cos^{2} A - 1$$
Show that (i)
$$coS2A = 1 - 2\sin^{2} A$$
(ii)
(4 marks)
(4 marks)

© 2013 – Technical University of Mombasa

Page 3

- **b)** Show that the sum of infinity of a geometric progression is given by where a is the first term and r is the common ratio. (4 marks) $y = x^3$ (4 marks) $\int x \ln x dx$ (4 marks) $x^2 - 6x + 13 = 0$ quadratic formula (4 marks) $1 + \tan 60^{\circ}$ $1 - \tan 60^{\circ}$ (4 marks) $V(t) = 5t^4$ **c)** Given that the velocity of a particle is and that the distance S = 9 when t = 0, find an expression for the distance s(t). (5 marks) $y = 4x - x^2$
- d) Sketching the curves and area and evaluate the area bounded by the curve and the line y = 2x(4 marks)

 $S\infty = \frac{Aa}{1-r}$

c) Find from first principles the derivative of

d) Integrate

Question Five

a) Solve

b) (i) Express in surd form