TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN NEUTICAL SCIENCE (DNSC 13M)

AMA 2205: MATHEMATICS II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms as used in Mathematics:
(i) An equation
(ii) Sequence
b) Differentiate the following from first principles:

$$
y=x^{2}
$$

(i)

$$
y=\sin x
$$

(ii)
c) Insert 3 arithmetic means between 8 and 18
d) Simplify the following:
J^{42}
(i)
J^{12}
(ii)
(iii) $J^{J^{31}}$
(iv)

$$
z=4+j 3
$$

e) Express the following in polar form
f) Solve for the unknown in the equations below:

$$
\begin{aligned}
& \frac{2 x-1}{5}+\frac{x-2 y}{10}=\frac{x+1}{4} \\
& \frac{3 y+2}{3}+\frac{4 x-3 y}{2}=\frac{5 x+4}{4}
\end{aligned}
$$

Question Two

a) State whether or not each of the following equations below can be expressed as a product of linear factors.
$2 x^{2}-9 x+18=0$
(i)

$$
2 x^{2}+11 x+28=0
$$

(ii)

$$
x^{2}+5 x-24=0
$$

(iii)

$$
x^{2}-4 x-21=0
$$
 (iv) f

b) Integrate the following w.r.t x :

$$
\int \frac{2 x+3}{x^{2}+3 x-5} d x
$$

(i)
(4 marks)

$$
\int \frac{\ln x}{x} d x
$$

(ii)
(2 marks)
c) For the series $2+8+14+20+\ldots$ Determine:
(i) U_{10}
(2 marks)
(ii) S_{10}
d) The $4^{\text {th }}$ term of an Arithmetic progression is 22 and the $7^{\text {th }}$ term is 40 . Determine the first term the common difference and hence the sum of the first 12 terms

Question Three

a) Draw an Argand diagram to represent the vectors:

$$
z_{1}=2+j 3
$$

(i)

$$
z_{2}=-3+j 2
$$

(ii)

$$
z_{3}=4-j 3
$$

(iii)

$$
z_{4}=-4-j 5
$$

(iv)
b) Solve for the unknowns below:

$$
\begin{align*}
& 5(x+2 y)-4(3 x+4 z)-2(x+3 y-5 z)=16 \\
& 2(3 x-y)+3(x-2 z)+4(2 x-3 y+z)=-16 \\
& 4(y+2 z)+2(2 x-4 y-3)-3(x+4 y-2 z)=-62 \tag{8marks}
\end{align*}
$$

c) Given that $\mathrm{y}=\mathrm{uv}$, where u and v are functions of x , show that:

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

d) The $6^{\text {th }}$ term of a geometric progression is 1214 and the $3^{\text {rd }}$ term is 45 . Determine the sum of the first 6 terms

Question Four

a) Transpose the following formular to make f the subject:

$$
\frac{R}{r}=\sqrt{\frac{f+p}{f-p}}
$$

b) Derive the quadratic formular and hence solve the following equation given below:

$$
2 x^{2}+5 x+1=0
$$

$$
z_{1}=r_{1}\left(\cos \theta_{1}+j \sin \theta\right)_{1}, z_{2}=12\left(\cos \theta_{2}+j \sin \theta_{2}\right)
$$

c) Given that

Show that

$$
z_{1} \cdot z_{2}=r_{1} r_{2}\left(\cos \theta_{1}+\theta_{2}\right)+j \sin \left(\theta_{1}+\theta_{2}\right)
$$

Question Five

$$
x=a(\cos \theta+\theta \cos \theta), y=a(\sin \theta-\theta \cos \theta)
$$

a) Given that , find:
$\frac{d y}{d x}$
(i)

$$
\frac{d^{2} y}{d x^{2}}
$$

(ii)
b) Integrate the following w.r.t x :
c) Express the following in polar coordinates (4, -3)

$$
p q^{2}+r q+k=0
$$

d) Make q the subject of the formular below

