

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS DIPLOMA IN NEUTICAL SCIENCE (DNSC 13M)

AMA 2205: MATHEMATICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer Booklet

- Mathematical Table

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

© 2015 – Technical University of Mombasa

(i)

 J^{42} **(i)** J^{12} (ii) J^{11} (iii) J^{3} (iv) (2 marks)

f) Solve for the unknown in the equations below:

$$\frac{2x-1}{5} + \frac{x-2y}{10} = \frac{x+1}{4}$$
$$\frac{3y+2}{3} + \frac{4x-3y}{2} = \frac{5x+4}{4}$$

Question Two

a) State whether or not each of the following equations below can be expressed as a product of linear factors.

$2x^2 - 9x + 18 = 0$ (i)	(1 mark)
$2x^2 + 11x + 28 = 0$ (ii)	(1 mark)
$x^2 + 5x - 24 = 0$ (iii)	(1
mark)	

(i) An equation (ii) Sequence

 $y = x^2$

a) Define the following terms as used in Mathematics:

b) Differentiate the following from first principles:

 $y = \sin x$ (ii) (5 marks) (4 marks) c) Insert 3 arithmetic means between 8 and 18 **d)** Simplify the following: (2 marks) (2 marks) (2 marks)

$$z = 4 + j3$$

(5 mark)

(3 marks)

(2 marks)

(3 marks)

$$x^2 - 4x - 21 = 0$$
 (iv) f

b) Integrate the following w.r.t x:

$$\int \frac{2x+3}{x^2+3x-5} dx$$
(i)
$$\int \frac{\ln x}{x} dx$$
(ii)
(2 marks)
(2 marks)

c) For the series 2 + 8 + 14 + 20 + Determine: (i) U₁

(i)
$$U_{10}$$
 (2 marks)
(ii) S_{10} (2 marks)

d) The 4th term of an Arithmetic progression is 22 and the 7th term is 40. Determine the first term the common difference and hence the sum of the first 12 terms (6 marks)

Question Three

a) Draw an Argand diagram to represent the vectors:

$z_1 = 2 + j3$	
(i)	(1 mark)
$z_2 = -3 + j2$	
(ii) $z = 4$ i?	(1 mark)
$z_3 = 4 - J5$ (iii)	(1 mark)
$z_4 = -4 - j5$ (iv)	(1 mark)

b) Solve for the unknowns below:

$$5(x+2y) - 4(3x+4z) - 2(x+3y-5z) = 16$$

$$2(3x-y) + 3(x-2z) + 4(2x-3y+z) = -16$$

$$4(y+2z) + 2(2x-4y-3) - 3(x+4y-2z) = -62$$

(8 marks)

c) Given that y = uv, where u and v are functions of x, show that:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

(6 marks)

d) The 6th term of a geometric progression is 1214 and the 3rd term is 45. Determine the sum of the first 6 (2 marks) terms

Question Four

a) Transpose the following formular to make f the subject:

$$\frac{R}{r} = \sqrt{\frac{f+p}{f-p}}$$
(6 marks)

b) Derive the quadratic formular and hence solve the following equation given below: $2x^2 + 5x + 1 = 0$

$$z_{1} = r_{1}(\cos\theta_{1} + j\sin\theta_{1}), z_{2} = 12(\cos\theta_{2} + j\sin\theta_{2})$$

c) Given that
$$z_{1} \cdot z_{2} = r_{1}r_{2}(\cos\theta_{1} + \theta_{2}) + j\sin(\theta_{1} + \theta_{2})$$

(7 marks)

Question Five

$$x = a(\cos \theta + \theta \cos \theta), y = a(\sin \theta - \theta \cos \theta)$$
a) Given that , find:

$$\frac{dy}{dx}$$
(i) (6 marks)

$$\frac{d^2 y}{dx^2}$$
(ii) (3 marks)

$$\int x^2 \ln x dx$$
b) Integrate the following w.r.t x:
(5 marks)
(4 marks)

$$pq^2 + rq + k = 0$$

d) Make q the subject of the formular below (2 marks)

(7 mars)