TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBE 3202: MATHEMATICS IV
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions. Answer question ONE (Compulsory) any other TWO questions
Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required
This paper consists of THREE printed pages
Question One (Compulsory)
a) A matrix m is given as:

$$
m=\left(\begin{array}{cc}
\cos x & -\sin x \\
\sin x & \cos x
\end{array}\right) \text { show that the matrix is orthogonal if } m^{-1}=m^{t}
$$

(4 marks)

$$
P=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
5 & 0 & 5 \\
10 & 2 & 10 \\
0 & -2 & 1
\end{array}\right)
$$

b) Given

If (i) matrix m
(ii) M^{-1} and P^{-1} and hence Q^{-1}
(16 marks)

Question Two

a) A bag contains 13 marbles of same size 8 are black, 3 white and 2 are red. Two marbles are drawn without replacement. Find probability that both are white
(5 marks)
b) 95% of bolts produced by a machine are non-defective, 200 bolts are produced per hour. Find probability that if a random sample is drawn then:
(i) At least 2 will be defective
(ii) At most 2 will be defective
c) The mean mass of 1000 blocks is 3.5 kg and have a standard deviation of 0.25 kg . Find the probability that a sample of 50 blocks chosen at random without replacement will have a combined mass:
(i) Between 250 kg and 265.5 kg
(ii) Exceed 260kg
(8 marks)
Question Three
a) Given

$$
A=\left(\begin{array}{ll}
1 & 4 \\
1 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)
$$ determine A^{-1} and B^{-1}

(5 marks)

$$
P=\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 2 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

b) Find P-1 given
and hence solve the following simultaneous equations:

$$
\begin{aligned}
& 3 x+y-z=2 \\
& x+2 y-z=2 \\
& x+y+z=6
\end{aligned}
$$

Question Four

a) Form a random sample of size 2 given the data:

3, 5, 4, 2, 1
(i) Find the mean for the samples
(ii) Find sampling distribution of means for the sample means
(iii) Determine standard error marks)
b) Results for a tensile strength were as follows:

Force applied (KN)	4.5	8.7	12	15	22	26
Extension (mm)	3.2	8.6	10	14	18	21

(i) Determine the equation for regression line of force on extension
(ii) Comment on the results obtained
(iii) Determine the expected extension at a force of 10 KN marks)

Question Five

A tie has a mean breaking strength of 100.25 KN . Test results carried out on similar ties are:

Mean breaking strength (KN)	99.4	100	100.1	100.2	100.5	100.7	100.8
Frequency	2	2	4	5	3	2	2

Test at 5\% significance level that the mean is greater than 100.25 KN
(20 marks)

