

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN MEDICAL LABORATORY (DMLS 13M)

AMA 2101: MATHS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:
 You should have the following for this examination

 Answer Booklet

 This paper consist of FIVE questions in TWO sections A & B

 Answer question ONE (COMPULSORY) and any other TWO questions
 Maximum marks for each part of a question are as shown

© 2013 – Technical University of Mombasa

SECTION A (COMPULSORY)

Question One

a)	Define the following terms as used in mathematics:(i) An linear equation(ii) An identity	(1 marks) (1 marks)
b)	Evaluate the following: log ₇ 83.64	
		(3 marks)
c)	Test for simple factors and hence solve the quadratic equation $2x^2 - 3x - 5 = 0$	(5 marks)
d)	Derive the quadratic formula	(6 marks)
a)	$y = x^{\overline{2}}$	(5 marks)
e)	Differentiate the following from first principles	(J marks)
f)	Evaluate the following: $y = \int (3x+2)^4 dx$	
		(4 marks)
g)	Evaluate the following:	
	$\int \left(4e^{2x+4} + \frac{3}{4x-1}\right) dx$	
		(3 marks)
SE	CTION B (Answer any TWO questions from this section)	
Qu	iestion Two	
a)	Solve for the unknown in the following set of equations:	

5(x+2y) - 4(3x+4z) - 2(x+3y-5z) = 16 2(3x-y) + 3(x-2z) + 4(2x-3y+z) = -164(y-2z) + 2(2x-4y-3) - 3(x+4y-2z) = -62

(8 marks)

b) Simplify the following:

$$F = \sqrt[3]{a^6b^3} \div \sqrt{\frac{1}{9}a^4b^6} \times \left(4\sqrt{a^6b^2}\right)^{\frac{1}{2}}$$

(4 marks)

- c) Solve for x in the following: (3 marks) $2 \log_{10} x = 4$
- **d)** Solve by completing the square:

$$4x^2 - 16x + 3 = 0$$

Question Three

a) Determine whether or not the following set of equations can be expressed as a product of linear factors.

 $x^2 - 9x + 18$ (i) (1 mark) $x^2 - 5x - 24$ **(ii)** (1 mark) $2x^2 - 3x - 4$ (iii) (1 mark) $3x^2 - 10x + 4$ (iv) (1 mark) $y = \cos x$ **b)** Find the differential coefficient of from first principles (6 marks) $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $y = uv^{-1}$ **c)** Given that where u and v are functions of x. Show that (5 marks) $y = \frac{5e^x}{\cos x}$ dy dx And hence find (3 marks) of the following: **d)** Solve for x in the following equations: 5(x-1) + 3(2x+9) - 2 = 4(3x-1) + 2(4x+3)(2 marks) **Question Four a)** Solve the equation: $7(14.3^{x+5}) \times 6.4^{2x} = 294$

(5 marks)

b)	The length of a cylindrical pipe is 2m. Its external radius is 2.1cm, and the external Find the volume of the material that was used to make it.	radius is 1.4cm. (4 marks)
c)	Make r the subject of the following formular	(4 marks)
	$d = h(2r-h)^{\frac{1}{2}}$	
d)	Evaluate the following:	
	$\int \frac{\ln x}{x} dx$	
	(i)	(2 marks)
	$\int \cos^5 x dx$	
	(ii)	(3 marks)
e)	Solve for x in the following:	
	$x^2 - 1 = 0$	(2 marks)
		(2 marks)
	y = uv	
a)	Given that $dy = dv$, where u and v are functions of x show that:	
	$\frac{d}{dx} = u \frac{d}{dx} + v \frac{d}{dx}$	(5
		(5 marks)
b)	Find the differential coefficient of: $e^{x} \ln 5x$	
	(i)	(3 marks)
	$x^{3} + y^{3} + 3xy^{2} = 8$ (ii)	(3 marks)
c)	Differentiate between explicit and implicit functions	() marks)
C		(2 marks)
d)	$x = a(\cos\theta + \theta\sin\theta)$ $y = a(\sin\theta - \theta\cos\theta)$ Given that and Find:	
u)	$\frac{dy}{dy^2}$	
	$dx' dx^2$	(4 marks)
		(+ 1101 15)