

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
DEGREE FOR THE BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY \& ENVIRONMENTAL PHYSICS BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BTRE \& BTAP)

APS 4104: MECHANICS I

END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

The following information may be useful:
Acceleration due to gravity $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
Mass of earth
$\mathrm{M}_{\mathrm{e}}=5.98 \times 1024 \mathrm{~kg}$
Radius of earth $\quad R_{e}=6.37 \times 10^{6} \mathrm{~m}$
Speed of electromagnetic waves $\mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}$
Universal gravitational constant $\mathrm{G}=6.673 \times 10^{-4} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Question One (Compulsory)
a) (i) Explain what is meant by dimensional analysis and state two significant uses of dimensional analysis in physical problem
(3 marks)
(ii) A standing wave is set up in a stretched string by plucking it. The velocity (V) of the wave in the
plucked string depends on the tension (F) in the string, its length $(\mathrm{L}$) and its mass (M). By using the method of dimensional analysis, express the velocity V in terms of the tension F, the length L and mass M of the string.
(4 marks)
b) A particle moves a long a curve whose parametric equation are:
$x=3 e^{-2 t}, \quad y=4 \sin 3 t, \quad z=5 \cos 3 t$
where t is the time. Find:
(i) The velocity and acceleration of the particle at any time t.
(2 marks)
(ii) The magnitude of velocity and acceleration at $\mathrm{t}=0$
(4 marks)
c) (i) With what velocity must a ball be thrown upwards to reach a height of 15 m ?
(ii) A ball rolls off the edge of a horizontal table 4 m high. If it strikes the floor at a point 5 m horizontally away from the edge of the table, what is its speed at the instant it left the table?
(3 marks)
d) (i) State the THREE Newton's Laws of motion?
(ii) Explain what inertia means based on Newton's first law of motion.
e) Explain the difference between mass and weight.
f) (i) What is linear momentum?
(ii) State the principle of conservation of linear momentum.
(iii) Differentiate between elastic and inelastic collisions

Question Two

a) State the significance of vector product and dot product.
b) State the THREE laws of vector addition.

$$
\vec{A}=\hat{i}+2 j-2 k, \quad \vec{B}=2 \hat{i}+\hat{j}+\hat{k}, \quad \vec{C}=\hat{i}-3 \hat{j}-2 \hat{k}
$$

c) If vectors
. Find the magnitude and direction of the

$$
\vec{R}=\vec{A}+\vec{B}+\vec{C}
$$

vector

$$
\eta \frac{\text { Frictional Force }}{\text { Area } \times \text { Velocity Gradient }}
$$

d) The coefficient of viscosity of a liquid is Using the method of dimensional analysis determine the basic units of
e) A jet engine on a test bed takes in 20.0 kg of air per second at a velocity of $100 \mathrm{~ms}^{-1}$ and burns 0.80 kg of fuel per second. After compression and heating the exhaust gases are ejected at $500 \mathrm{~ms}^{-1}$ relative to the aircraft. Calculate the thrust of the engine.
(5 marks)

Question Three

a) (i) State Newton's Law of universal gravitation.
(2 marks)
(ii) Consider a satellite orbiting the earth in a circular path at a distance of 500 km above the earth's surface. Show that the square of the period of the satellite is proportional to the cube of the radius of the orbit with a constant of proportionality depending on the mass of the central body (earth)
(4 marks)
(iii) Given that the mean orbital radius of the earth is $1.496 \times 10^{11} \mathrm{~m}$, find the mass of the sum (the earth has a period of one year)
(4 marks)
b) Consider the motion of a body of mass m, about a massive body of mass M in circular orbit. Show that the total energy of a circular orbit is negative and is exactly one half the potential energy.
c) A Meteorite is initially at rest in interplanetory space at a large distance from the sun. Under the influence of gravity, the Meteorite begins to fall towards the sun in a straight radial line. With what speed does it strike the sun?
(5 marks)

Question Four

a) Starting from rest a car travels for 2 minutes with a uniform acceleration of $0.3 \mathrm{~ms}^{-2}$, after which it kept a constant speed for 4000 m . The car is then brought to rest with a retarclation of $0.6 \mathrm{~ms}^{-2}$. What is the time taken for the journey?
b) A pendulum bob of mass 1.0 kg is attached to a string 1.0 m long and made to revolve in a horizontal cycle of radius 0.6 m . Find the period of the motion and tension of the string.
(5 marks)
c) A 60 kg woman stands on a scale on the floor of an elevator. What is the reading when:
(i) The elevator is at rest?
(1 mark)
(ii) The elevator is accelerating upwards at $1.8 \mathrm{~ms}^{-2}$
(iii) The elevator is moving upwards with a constant velocity.
(iv) The elevator cable is cut
d) Water in a bucket is whirled round a vertical circle. Under what condition will water stay in the bucket?
(5 marks)

