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Question One (Compulsory)

a) Find the g.c.d of 382 and 26 using Euclid’s algorithm then find integers m and n such that (382,26) =
382m + 26n (4 marks)

b) Prove by Mathematics induction that 
 1222....221 32  nn

(2 marks)

c) Prove that the cancellation law for multiplication hold in Z (3 marks)

d) Solve for x:

 8mod3

)5(mod2




x

x

(4 marks)

e) Find the multiplicative inverse of (9) in 2/242. Hence solve 
    89 x

in z/242 (5 marks)
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f) If C is advisor of a and b prove that C is advisor of ax +by for all 
/, zyx 

(3 marks)

g) (i)  Define the term Eulers ph1 function (2 marks)

(ii) Find the number of element in 

*

21
2

using Euler’s Ph1 function (2 marks)

h) Show that if 
yx 0

then 

22 yx 
(5 marks)

Question Two

a) Let a and b be the integers and a = bq + r then prove that (a,b) = (b, r) (6 marks)

b) Find (1776, 1492) using Euclid’s algorithm and also find m and n such that (1776, 1492) = 1776 +
1492n (4 marks)

c) Solve for x in 
1420 x

(mod 63) (5 marks)

d) An element (9) of z/n has a multiplicative inverse in z/n if t (a, n) = 1 (5 marks)

Question Three

a) Solve the equation 
745 zinx 

(5 marks)

b) Let a and b be non-zero integers then show that a and b are relatively prime if t 
/, zts 

such that 1 =
sa + tb (5 marks)

c) Prove that if 
 nayax mod

and (a,n) = 1 then
 nyx mod

 (3 marks)

d) Find the g.c.d of 117 and 26 and express it as a linear combination of 117 and 26 (2 marks)

e) Find 

  17
2ln12 1

(5 marks)

Question Four 

a) State fundamental theorem of arithmetic (2 marks)

b) Show that 12 + 22 + 32 + … + 

  
6

121  nnn

(6 marks)

c) Show that if 
 uba mod

and 
)(mod udc 

 then 
 nbdac mod

(3 marks)

d) State and prove format factorization theorem (7 marks)

Question Five
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a) Prove that if a and b are integers with (a, b) = d the equation 
cbyax 

has no integral solution. If
cd /

then there are infinitely many solution. More over if x = x0 and y = yo is a particular solution of

the equation then all solution are given by 

n
d

b
xx 





 0

t and 

 nd
ayy o 

(7 marks)
b) Find all the integral solution of linear Diophantine equation 20x + 50y = 510 (5 marks)

c) You are a secret agent. An evil spy with shallow number theory skills uses the RSA public key coding
system in which the public modulus is n = 1537 and the encoding exponent is e = 47. You intercept
one of the encoded secrete messages being sent to the evil spy, namely the number 570. Using your
superior number theory skills, decode this message, thereby saving countless people from the plot of
the evil spy (5 marks)
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