

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN CIVIL/ELECTRICAL & ELECTRONIC ENGINEERING

SMA 2471: NUMERICAL ANALYSIS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2013 **TIME:** 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer Booklet

This paper consist of **FIVE** questions in **TWO** sections **A & B** Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

 $\frac{dy}{dx} = y - \frac{2x}{y}$

a) Use the Euler's method to find an approximation to the initial value problem $0 \le x \le 0.2$

if y(0) = 1

in the range

with step size h = 0.1

(4 marks)

b) An alternating current i has the following values at equal intervals of 2 milliseconds:

Time (s)	0	2	4	6	8	10	12
Current (A)	0	3.5	8.2	10.0	7.3	2.0	0

$$q = \int_0^{12} idt$$

Charge q in millicoulumbs is given by charge in the 12ms period.

, use Simpson's rule to determine the approximate (3 marks)

$$\frac{dy}{dx} = y = x$$

$$y(0) = 2$$

c) If where find y (0.1) with h = 0.1 using the 4th order Runge –Kutta method correct to 4 d.p. (7 marks)

f(0) = 1 f(1) = 3

d) Find the unique quadratic polynomial of degree two (2) or less such that using the Lagrcange interpolation.

, f(3) = 55 **(6 marks)**

$$\int_{-1}^{1} \frac{dx}{x+2}$$

e) Use the 2 point Gauss-legendre rule to approximate

(4 marks)

f) The table below provides the relationship between length L(m) and temperature T(k) on a structure, find the length L at T = 372.1K using Newton divided difference. **(6 marks)**

T(Kelvin)	361	367	378	387	399
L (metres)	154.	167.	191.	212.5	244.2
	9	0	0		

SECTION B (Answer any TWO questions from this section)

Question Two

$$\int_1^3 \frac{2}{\sqrt{x}} \ dx$$

a) Use the trapezoidal rule with 4 intervals to evaluate the integral

correct to 3 d.p. (4 marks)

$$\frac{dy}{dx} = x - y$$

 $\boldsymbol{b}\boldsymbol{)}$ Given the first order differential equation

subject to the condition that y(0) = 1 and h = 0.1, $0 \le x \le 4$

solve the differential equation using milne's method if

correct to 4 significant figures.

(8 marks)

c) Applying the Newton-Raphson's method determine the root of an equation given by $f(x) = \cos x - xe^x$

correct to 3 d.p.

(8 marks)

Question Three

a) From the table given below:

x°	30	60	90
cos x°	0.866	0.500	0.000

Find cos50° using Newton forward difference interpolating quadratic polynomial (4 marks)

xy'=x-y y(2)=2 **b)** Solve by Taylor's series the differential equation if at x=2.1 correct to 4 d.p

at
$$x = 2.1$$
 correct to 4 d.p

(8 marks)

$$\int_0^1 e^{-x^2} dx$$

c) Using the error bound determine a value of h to estimate

correct to 2 decimal places by the

trapezoidal rule.

(8 marks)

Question Four

 $\log_{10} x$

a) Using the central difference obtain a numerical approximation for the 2nd derivative of at x = 5given h = 0.125(4 marks)

v(0) = 1

b) Determine the value of y when x = 0.1 using Euler's modified method given that if $\frac{dy}{dx} = y + x^2$

and h = 0.05

(6 marks)

$$\int_0^{\frac{\pi}{3}} \sqrt{1 - \frac{1}{3} \sin^2 \theta}$$

c) Use Simpson's rule to evaluate

using 6 intervals

(5 marks)

$$I = \int_0^1 \frac{dx}{1+x}$$

d) Find the approximate value of

with a step size h = 0.25 using the trapezoidal rule.

(5 marks)

Question Five

- a) Obtain the truncation error bound of sin 0.15 when determined by Lagrange linear interpolation if provided with $\sin 0.1 = 0.0998$ and $\sin 0.2 = 0.1987$ (5 marks)
- **b)** A particle moves along a path such that at a time t its distance S from a fixed point on the path is given

$$\frac{ds}{dt} = t \left(8 - t^3 \right)^{\frac{1}{2}}$$

bv particle from time t = 0.8 sec to t = 1.6 sec using n = 8 correct to 3 d.p. (5 marks)

$$\int_0^{\pi/2} \sin x dx$$

- **c)** Use the trapezoidal rule to evaluate
- given that n = 10.

(6 marks)

d)	Illustrating by finite as used in numerical	difference tables, analysis and state	explain the phi when they are	rases central d best applied.	ifference and ba	ckward difference (4 marks)