

# TECHNICAL UNIVERSITY OF MOMBASA <br> Faculty of Applied \& Health 

## Sciences

# DEPARTMENT OF MATHEMATICS \& PHYSICS <br> UNIVERSITY EXAMINATION FOR THE <br> BACHELOR OF SCIENCE IN CIVIL/ELECTRICAL \& ELECTRONIC ENGINEERING 

## SMA 2471: NUMERICAL ANALYSIS

## SPECIAL/SUPPLEMENTARY EXAMINATION <br> SERIES: OCTOBER 2013 <br> TIME: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## SECTION A (COMPULSORY)

Question One

$$
\frac{d y}{d x}=y-\frac{2 x}{y}
$$

a) Use the Euler's method to find an approximation to the initial value problem

$$
\text { if } y(0)=1
$$

$$
0 \leq x \leq 0.2
$$

in the range $\quad$ with step size $h=0.1$
b) An alternating current i has the following values at equal intervals of 2 milliseconds:

| Time (s) | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Current (A) | 0 | 3.5 | 8.2 | 10.0 | 7.3 | 2.0 | 0 |

$$
q=\int_{0}^{12} i d t
$$

Charge q in millicoulumbs is given by , use Simpson's rule to determine the approximate charge in the 12 ms period.
(3 marks)

$$
\frac{d y}{d x}=y=x \quad y(0)=2
$$

c) If where correct to 4 d.p. find $y$ (0.1) with $h=0.1$ using the $4^{\text {th }}$ order Runge - Kutta method
(7 marks)

$$
f(0)=1 f(1)=3
$$

d) Find the unique quadratic polynomial of degree two (2) or less such that using the Lagrcange interpolation.
, $f(3)=55$
(6 marks)

$$
\int_{-1}^{1} \frac{d x}{x+2}
$$

e) Use the 2 point Gauss-legendre rule to approximate
f) The table below provides the relationship between length $\mathrm{L}(\mathrm{m})$ and temperature $\mathrm{T}(\mathrm{k})$ on a structure, find the length L at $\mathrm{T}=372.1 \mathrm{~K}$ using Newton divided difference.

| T(Kelvin) | 361 | 367 | 378 | 387 | 399 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| L (metres) | 154. <br> 9 | 167. <br> 0 | 191. <br> 0 | 212.5 | 244.2 |

## SECTION B (Answer any TWO questions from this section)

## Question Two

$$
\int_{1}^{3} \frac{2}{\sqrt{x}} d x
$$

a) Use the trapezoidal rule with 4 intervals to evaluate the integral
correct to 3 d.p.
(4 marks)

$$
\frac{d y}{d x}=x-y
$$

b) Given the first order differential equation subject to the condition that $y(0)=1$ and $h=0.1$, $0 \leq x \leq 4$ solve the differential equation using milne's method if correct to 4 significant figures.
(8 marks)
c) Applying the Newton-Raphson's method determine the root of an equation given by $f(x)=\cos x-x e^{x}$ correct to 3 d.p.
(8 marks)
Question Three
a) From the table given below:

| $x^{\circ}$ | 30 | 60 | 90 |
| :--- | :--- | :--- | :--- |
| $\cos x^{\circ}$ | 0.866 | 0.500 | 0.000 |

Find $\cos 50^{\circ}$ using Newton forward difference interpolating quadratic polynomial

$$
x y^{\prime}=x-y \quad y(2)=2
$$

b) Solve by Taylor's series the differential equation if at $x=2.1$ correct to $4 \mathrm{~d} . \mathrm{p}$
(8 marks)

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

c) Using the error bound determine a value of $h$ to estimate trapezoidal rule.
correct to 2 decimal places by the
(8 marks)

## Question Four

$$
\log _{10} x
$$

a) Using the central difference obtain a numerical approximation for the $2^{\text {nd }}$ derivative of

$$
\text { at } x=5
$$ given $\mathrm{h}=0.125$

(4 marks)

$$
y(0)=1
$$

b) Determine the value of y when $\mathrm{x}=0.1$ using Euler's modified method given that $\frac{d y}{d x}=y+x^{2}$

$$
\begin{equation*}
\text { and } \mathrm{h}=0.05 \tag{6marks}
\end{equation*}
$$

c) Use Simpson's rule to evaluate

$$
\int_{0}^{\frac{\pi}{3}} \sqrt{1-\frac{1}{3} \sin ^{2} \theta}
$$ using 6 intervals

$$
I=\int_{0}^{1} \frac{d x}{1+x}
$$

d) Find the approximate value of
with a step size $\mathrm{h}=0.25$ using the trapezoidal rule.
(5 marks)

## Question Five

a) Obtain the truncation error bound of $\sin 0.15$ when determined by Lagrange linear interpolation if provided with $\sin 0.1=0.0998$ and $\sin 0.2=0.1987$
b) A particle moves along a path such that at a time $t$ its distance $S$ from a fixed point on the path is given

$$
\frac{d s}{d t}=t\left(8-t^{3}\right)^{1 / 2}
$$

by using the Simpson's rule to calculate the approximate distance travelled by the particle from time $\mathrm{t}=0.8 \mathrm{sec}$ to $\mathrm{t}=1.6 \mathrm{sec}$ using $\mathrm{n}=8$ correct to $3 \mathrm{~d} . \mathrm{p}$.

$$
\int_{0}^{\pi / 2} \sin x d x
$$

c) Use the trapezoidal rule to evaluate given that $\mathrm{n}=10$.
d) Illustrating by finite difference tables, explain the phrases central difference and backward difference as used in numerical analysis and state when they are best applied.

