

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 SMA 2471: NUMERICAL ANALYSIS I
 END OF SEMESTER EXAMINATION
 SERIES: APRIL 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

a) Find a polynomial that will fit $(0,-4),(1,-3)$ and $(3,5)$. Hence find the rate of change of y with respect to x . When $\mathrm{x}=1.5$.
(4 marks)
$10^{2 / 3} \quad x_{0}=4$
b) Use Newton-Raphson method to evaluate to 7 decimal places taking as the initial approximation.

$$
y^{\prime}=y, y(0)=1
$$

c) Solve at $\mathrm{x}=0.04$ using Taylor series.
(5 marks)
d) A coach accelerates from rest to $100 \mathrm{~km} / \mathrm{h}$ in 90 seconds. Its speed, $\mathrm{vkm} / \mathrm{h}$ measured at five second intervals, is given by the table:

t	0	5	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9

| | | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 |
| :--- |
| | | | | | | | | | | | | | | | | | | 1 |
| | | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 6 | 7 | 7 | 8 | 9 | 9 | 9 | 9 | 0 |
| 5 | 9 | 2 | 2 | 0 | 3 | 2 | 1 | 5 | 6 | 1 | 7 | 5 | 0 | 5 | 8 | 9 | 0 | |

Use Simpson's rule to find the total distance travelled within the 90 seconds.
(4 marks)

$$
I=\int_{1}^{2} \frac{2 x}{1+x^{4}} d x
$$

e) Evaluate the integral
using Gauss Legendre 3 point formula.
(6 marks)

$$
\lambda_{1} \quad \lambda_{2} \quad \int_{0}^{h} f(x) d x=\lambda_{1} f(0)+\lambda_{2} f(h)+E
$$

f) Determine and so that is exact and write down the integration formula (NB E is the error term)
(5 marks)

Question Two

$$
\int_{0}^{2} e^{x} d x
$$

a) Use Romberg integration to evaluate correct to 3 decimal places.
(12 marks)

$$
\int_{0}^{2} e^{x} d x
$$

b) How many subdivisions are required to approximate the integral with the accuracy in (a) above?
with trapezoidal rule and
(8 marks)

Question Three

a) The response x of a given hydraulic value subject to a sinusoidal input variation is given by

$$
\frac{d x}{d t}=\sqrt{2\left(1-\frac{x^{2}}{\sin ^{2} t}\right)} \quad\left(\frac{d x}{d t}\right)_{x=0}=\sqrt{\frac{2}{3}}
$$

with $\mathrm{x}=0$ at $\mathrm{t}=0$. Show that
and hence use Runge-Kutta fourth
order method to obtain a solution at $\mathrm{t}=0.2$
(10 marks)

$$
\int_{x 0}^{x 1} f(x) d x=\frac{h}{2}\left(f_{0}+f_{1}\right)+p h^{2}\left(f_{0}^{\prime}-f_{1}^{\prime}\right)+R
$$

b) Obtain a generalized trapezoidal rule of the form find the constant P and the error term.

Question Four

a) Use Newton-Gregory forward difference formula to establish the integration formula $\int_{x_{0}}^{x_{n}} y d x=n h\left\{y_{0}+\frac{n}{2} \Delta y_{0}+n\left(\frac{2 n-3}{12}\right) \Delta^{2} y_{0}+. \frac{n(n-2)}{24} \Delta^{3} y_{0}+\ldots\right\}$
(4 marks)

$$
y_{4}=y_{0}+\frac{4}{3} h\left(2 y_{1}-y_{2}+2 y_{3}\right)
$$

b) By putting $\mathrm{n}=4$ show that

$$
\frac{d y}{d x}=x-y
$$

c) Solve the differential equation:
by Milne's method to 4 decimal places given that the y_{2} modified Euler method gives y_{1}, as 0.9095 and as 0.8372 .

Question Five

a) Find a polynomial to fit:
(11 marks)

x	0	0.1	0.2	0.3	0.4	0.5
Y	1	0.521	-0.112	-0.893	-1.816	-2.875

b) Compute by Gaussian quadrature:

$$
I=\int_{0}^{1} \frac{\ln |x+1|}{\sqrt{x(1-x)}} d x
$$

The error must not exceed 5×10^{-3}

