

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2414: NUMERICAL METHODS FOR ENGINEERS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MARCH 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

$$
A=\left(\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right)
$$

a) Find the eigen values and eigen vectors of
(5 marks)
$L=\left(D^{2}+3 D+2\right) \quad f(t)=t^{3} \quad f_{2}(t)=\cos t \quad L\left(3 f,(t)+4 f_{2}(t)\right)$
b) Given that and , evaluate (5 marks)

$$
A=\left(\begin{array}{cc}
3-2 i & 1+i \\
2-i & -2+3 i
\end{array}\right)
$$

c) If find A *

$$
\int_{1}^{3} \frac{2}{\sqrt{x}} d x
$$

d) Use trapezoidal rule with 8 intervals to evaluate:
correct to 3 decimal places (5 marks)
e) Find the approximate values of y at $\mathrm{t}=0.1,0.2,0.3$ and 0.4 using Euler's method with a step size of h

$$
\begin{equation*}
y^{\prime}+2 y=2-e^{-4 t} \tag{7marks}
\end{equation*}
$$

$=0.1$ given that and $y(0)=1$

$$
y^{\prime}=3 x+2 y
$$

f) Apply Taylor series to solve the differential equation at $x=0.2$ given that $y(0)=1$
(5 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

$$
\int_{0}^{\pi / 3} \sqrt{1-1 / 3} \sin ^{2} \theta d \theta
$$

a) Evaluate
correct to 3 d.p using Simpsons rule with 6 intervals.
(7 marks)
b) Solve the system using the matrix method:

$$
\begin{aligned}
& \frac{d x}{d t}=6 x+5 y \\
& \frac{d y}{d t}=x+2 y
\end{aligned}
$$

c) Use row reduction to find the inverse of the following matrix:

$$
M=\left(\begin{array}{ccc}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right)
$$

Question Three

$$
r=u+a t
$$

a) The velocity of a car accelerating at uniform acceleration a between two points is given by where u is its velocity when passing the first point and t is the time taken to pass between the two points. If $v=21 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=3.5 \mathrm{~s}$ and $\mathrm{r}=33 \mathrm{~m} / \mathrm{s}$ when $\mathrm{t}=6 \mathrm{~s}$ use determinants to find the values of u and a correct to 4 significant figures.
b) Use Crammer's Rule to solve the system of linear equations

$$
\begin{aligned}
& 3 x+y+z=3 \\
& 2 x+2 y+5 z=-1 \\
& x-3 y-4 z=2
\end{aligned}
$$

c) Apply the modified Euler's method to determine the approximate values of y given that $y^{\prime}=x+y, y(0)=1 \quad 0 \leq x \leq 0.04$ and \quad with $\mathrm{h}=0.02$

Question Four

$$
y^{\prime}=y^{2}+1: y(0)=0
$$

a) Use the fourth order Runge - Kutta method to solve on the interval $(0,0.3)$ wth h $=0.1$.
(9 marks)
b) In two closed loops of an electrical circuits the current flowing are given by the simultaneous equations:

$$
\begin{aligned}
& I_{1}+2 I_{2}+4=0 \\
& 5 I_{1}+3 I_{2}-1=0
\end{aligned}
$$

Use to solve for I1 and I2 Kirchoffs method
c) Convert each of the following into normal system.

$$
\frac{d^{2} x}{d t^{2}}-\frac{5 d x}{d t}+x=e^{4 t}
$$

(i)

$$
\frac{d^{3} x}{d t^{3}}+2 \frac{d^{2} x}{d t^{2}}-\frac{7 d x}{d t}=2 t^{2}+1
$$

(ii)

Question Five

a) Use Romberg method to compute:

$$
\begin{gather*}
\int_{0}^{1} \frac{d x}{1+x} \\
\text { correct to } 4 \mathrm{~d} . \mathrm{p} \\
\mathrm{~h}=0.5, \mathrm{I}(\mathrm{a})=0.7084, \mathrm{I} \quad I(\mathrm{~h} / 2)=0.69 \quad \text { and }
\end{gather*}
$$

b) Applying Gauss and quadrature formula for the interval $(-1,1)$ to compute the integral:

$$
I=\int_{5}^{12} \frac{d x}{x} \text { choosing } \mathrm{n}=3
$$

(8 marks)
c) Use the trapezium rule to evaluate
using 6 intervals

