

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

AMA 3201: ORDINARY DIFFERENTIAL EQUATIONS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

Question One (Compulsory)

a) State the necessary condition for differential equation to be considered linear.

Hence with reason state whether:

$$
3 \frac{d^{3} y}{d x^{3}}+3 y \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=e^{2 x}
$$

is linear

$$
\left(2 x^{3}+3 y\right) d x+(3 x+y-1) d y=0
$$

b) Show that the differential equation is exact hence find its general solution
(8 marks)

$$
\frac{d y}{d x}=\frac{x+2 y-3}{x+y-3}
$$

c) Solve the linear fractional equation to obtain the general solution
a) Distinguish between an ordinary differential equation and partial differential equation.

$$
\begin{equation*}
y=A x^{2} e^{x} \quad \frac{d y}{d x}=\frac{y(x+2)}{x} \tag{2marks}
\end{equation*}
$$

b) Confirm that is the general solution to

Hence find the particular solution given $\mathrm{y}=1$ when $\mathrm{x}=0$

$$
x \frac{d y}{d x}=2-4 x^{3}
$$

c) Determine the general solution of

$$
\frac{d y}{d \theta}=\sec \theta+y \tan \theta
$$

given the boundary conditions $y=1$ when

Question Three

$$
x+1 \frac{d y}{d x}=x\left(y^{2}+1\right)
$$

a) By separation of variables solve

$$
\begin{equation*}
\frac{1}{x} \frac{d y}{d x}+4 y=2 \tag{6marks}
\end{equation*}
$$

b) Solve given the boundary conditions $\mathrm{x}=0$ and $\mathrm{y}=4$
$(x+2 y)(d x-d y)=d x+d y$
c) Solve

Question Four

a) An object moves with simple harmonic motion on the x axis initially its located at distance 46 m away from the origin when $t=0$ and velocity $v=15 \mathrm{~m} / \mathrm{s}$ and decelerating at $100 \mathrm{~m} / \mathrm{s}^{2}$ directed towards the origin 0 . Find the equation of position at any time t .

$$
\mu=\frac{K x}{M}
$$

(Hint F = -kx and for S.H.M,

(6 marks)

$$
y=C_{1} e^{-x}+C_{2} e^{2 x}
$$

b) Obtain differential equation associated with the equation
(8 marks)

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=0
$$

c) Find the particular solution for initial value problem given $\mathrm{y}(0)=0 \mathrm{y}$, and $(0)=$ -4

Question Five

a) A particle falls in a vertical line under gravity and the force of air resistance to its motion is proportional to its velocity. Show that the velocity cannot exceed a particular limit. (Hint - the $\frac{d v}{d t}=g-K v ;$
equation of motion is given by where g is the gravity and K proportionality constants respectively.
(5 marks)

$$
\left(2 x y+3 y^{2}\right) d x-\left(2 x y+x^{2}\right) d y=0
$$

b) Show that the equation is homogenous. Hence solve the equation.
(8 marks)

$$
\left(4 x+2 y^{2}\right) d x+2 x y d y=0
$$

c) Show that the equation is not exact but has an integrating factor (I.F) of the form x_{n}. Hence solve the equation

