

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

AMA 3201: ORDINARY DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

© 2013 - Technical University of Mombasa

Question One (Compulsory)

a) State the necessary condition for differential equation to be considered linear. (2 marks)

Hence with reason state whether:

$$3\frac{d^{3}y}{dx^{3}} + 3y\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + y = e^{2x}$$
 is

s linear

$$(2x^{3} + 3y)dx + (3x + y - 1)dy = 0$$

b) Show that the differential equation solution

$$\frac{dy}{dx} = \frac{x+2y-3}{x+y-3}$$

c) Solve the linear fractional equation **Question Two**

a) Distinguish between an ordinary differential equation and partial differential equation.

 $\frac{dy}{dx} = \frac{y(x+2)}{x}$ $y = Ax^2e^x$ **b)** Confirm that is the general solution to (5 marks) Hence find the particular solution given y = 1 when x = 0(10 marks)

$$x\frac{dy}{dx} = 2 - 4x^3$$

c) Determine the general solution of (3 marks) $\frac{dy}{d\theta} = \sec \theta + y \tan \theta$ $\theta = 0$

given the boundary conditions y = 1 when d) Solve (5 marks)

Question Three

$$x + 1\frac{dy}{dx} = x(y^2 + 1)$$

a)	By separation of variables solve	(4 marks)
	$\frac{1}{x}\frac{dy}{dx} + 4y = 2$	
b)	Solve given the boundary conditions $x = 0$ and $y = 4$	(6 marks)
	(x+2y)(dx-dy) = dx+dy	
c)	Solve	(10 marks)

Solve

Question Four

is exact hence find its general (8 marks)

(2 marks)

to obtain the general solution (8 marks)

(2 marks)

a) An object moves with simple harmonic motion on the x axis initially its located at distance 46m away from the origin when t = 0 and velocity v = 15m/s and decelerating at 100m/s² directed towards the origin 0. Find the equation of position at any time t.

$$\mu = \frac{Kx}{M}$$

(Hint F = -kx and for S.H.M,

(6 marks)

(8 marks)

(4 marks)

given y(0) = 0 y' and (0) =

b) Obtain differential equation associated with the equation

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$$

 $y = C_1 e^{-x} + C_2 e^{2x}$

c) Find the particular solution for initial value problem -4

Question Five

b) Show that the equation

a) A particle falls in a vertical line under gravity and the force of air resistance to its motion is proportional to its velocity. Show that the velocity cannot exceed a particular limit. (Hint – the

$$\frac{dv}{dt} = g - Kv;$$

equation of motion is given by where g is the gravity and K proportionality constants respectively. (5 marks)

$$(2xy+3y^2)dx-(2xy+x^2)dy=0$$

is homogenous. Hence solve the equation. **(8 marks)**

$$\left(4x+2y^2\right)dx+2xy\ dy=0$$

c) Show that the equation form x_n . Hence solve the equation **(7 marks)**