

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE

AMA 4316: ORDINARY DIFFERENTIAL EQUATIONS I

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables _
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **TWO** printed pages

Question One (Compulsory)

	$y = e^{2x}$	y''+y'-6y=0	
a)	Show that is a solution of the different	<i>w</i> that is a solution of the differential equation	
		$\frac{dy}{dx} + \frac{x}{y} = 0$	
b)	The differential equations a family of circles(i) Find the equations to the family of c(ii) If one of the family passes through (ircles	(2 marks) (2 marks)
c)	Show that the given differential equation as homogeneous and hence solve it $(x^3 + y^3)dx - 3xy^2dy = 0$		
			(7 marks)

f) Using the D-operators find the complete solution of:

$$\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}$$
(6 marks)

Question Two

$$ydx - xdy = 0$$

a) Show that is not exact

b) Show that
$$\overline{x^2}$$
 is an integrating factor for the above equation $ydx - xdy = 0$ (3 marks)

c) Solve the equation using integrating factor method (4 marks)

$$\frac{dy}{dx} + \frac{1}{x-1}y = xy^{\frac{1}{3}}$$

1

e) Find the singular points of the differential equation and determine whether they are regular as irregular singular points (5 marks)

$$(1-x)y''\frac{(1-x)y'}{x^2} + \frac{y}{x^2} = 0$$

Question Three

$E = 100 \sin 40t$

a) A circuit has a series electromotive force given by a resistor of 10 Ω and an inductor of

$$L\frac{di}{dt} + Ri = E$$

by the method of undetermined coefficient.

, solve the

0.5 Henry. If the initial current i = 0 at t = 0 and the basic differential equation and find the current i at t > 0

 $\left(D^2 + D - 2\right)y = 2x - 40\cos 2x$

b) Solve the equation

Question Four

(6 marks)

(2 marks)

(8 marks)

(12 marks)

a) Find two linearly independent series solutions of the differential equation about the point x = 1(12 marks)

$$y''-y = ex$$

b) By reduction of order method, solve

Question Five

$$y''-3y'+2y = \frac{1}{1-e^{-x}}$$

a) Solve by variation of parameters method

$$yy'' = (y')^2$$

by reducing the order by substitution $y' = p$
and $y'' = p \frac{dp}{dy}$

b) Solve by reducing the order by substitution (5 marks)

Page 3

(10 marks)

(8 marks)

y''+xy'+y=0