TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF MATHEMATICS AND COMPUTER SCIENCE

AMA 4316: ORDINARY DIFFERENTIAL EQUATIONS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
y=e^{2 x} \quad y^{\prime \prime}+y^{\prime}-6 y=0
$$

a) Show that is a solution of the differential equation
b) The differential equations a family of circles is given by
(i) Find the equations to the family of circles
(ii) If one of the family passes through $(1,2)$ find its equation
c) Show that the given differential equation as homogeneous and hence solve it

$$
\left(x^{3}+y^{3}\right) d x-3 x y^{2} d y=0
$$

$$
\frac{d x}{d t}+2 x=4 e^{3 t}
$$

d) Using Laplace Transform, solve at $\mathrm{t}=0$ if $\mathrm{x}=1$

$$
\left(3 x^{2}+4 x y\right) d y+\left(2 x^{2}+2 y\right) d y=0
$$

e) Show that the equation: is exact and hence solve it.
(5 marks)
f) Using the D-operators find the complete solution of:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{2 x} \tag{6marks}
\end{equation*}
$$

Question Two

$$
y d x-x d y=0
$$

a) Show that is not exact
(2 marks)

$$
\frac{1}{x^{2}}
$$

b) Show that is an integrating factor for the above equation

$$
y d x-x d y=0
$$

c) Solve the equation using integrating factor method

$$
\frac{d y}{d x}+\frac{1}{x-1} y=x y^{1 / 3}
$$

d) Solve the Bernoulli's equation
e) Find the singular points of the differential equation and determine whether they are regular as irregular singular points

$$
(1-x) y^{\prime \prime} \frac{(1-x) y^{\prime}}{x^{2}}+\frac{y}{x^{2}}=0
$$

Question Three

$$
E=100 \sin 40 t
$$

a) A circuit has a series electromotive force given by a resistor of 10Ω and an inductor of

$$
L \frac{d i}{d t}+R i=E
$$

0.5 Henry. If the initial current $\mathrm{i}=0$ at $\mathrm{t}=0$ and the basic differential , solve the equation and find the current i at $t>0$
(8 marks)

$$
\left(D^{2}+D-2\right) y=2 x-40 \cos 2 x
$$

b) Solve the equation by the method of undetermined coefficient.
(12 marks)

Question Four

$$
y^{\prime \prime}+x y^{\prime}+y=0
$$

a) Find two linearly independent series solutions of the differential equation point $x=1$
about the

$$
y^{\prime \prime}-y=e x
$$

b) By reduction of order method, solve

Question Five

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1-e^{-x}}
$$

a) Solve by variation of parameters method
(10 marks)

$$
y y^{\prime \prime}=\left(y^{\prime}\right)^{2}, y^{\prime}=p \quad y^{\prime \prime}=p \frac{d p}{d y}
$$

b) Solve by reducing the order by substitution and
(5 marks)

