

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING

SMA 2271: ORDINARY DIFFERENTIAL EQUATIONS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
a) Consider the equation:

$$
\left(y^{2}+2 x^{2} \frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}+2(y+x)\left(\frac{d y}{d x}\right)^{2}+x \frac{d y}{d x}+y=0
$$

(i) Show that the above differential equation is non-linear
(3 marks)
(3 marks)

$$
y=(x)=x \sec x
$$

b) Show that the function is a solution of the differential equation

$$
y^{11}(\tan x) y^{1}-\frac{\tan x}{x} \bullet y=\frac{1}{x^{2}} \bullet y^{3}
$$

(4 marks)
c) Solve the IVP by separation of variables method.

$$
2 x(y+1) d x-y d y=0 ; y(0)=-2
$$

(4 marks)
d) Show that the differential equation:

$$
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0
$$

(4 marks)

$$
\left(2 x^{2}-x y^{2}-2 y+3\right) d x-\left(x^{2} y+2 x\right) d y
$$

e) Show that the differential equation $=0$ is exact and find its general solution.
marks)

$$
\left(3 x^{4} y-1\right) d x+x^{5} d y=0
$$

f) Solve the total differential equation by integrating factors method when $\mathrm{x}=1$, $y=1$
(5 marks)

Question Two

a) Solve the equations:

$$
y^{\prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=0
$$

(i)

$$
4 D^{2}-4 D+y=0
$$

(ii)
(3 marks)
(3 marks)
b) Find the general solution of:

$$
y^{\prime \prime}-3 y^{\prime \prime}+9 y^{\prime}+13 y=0
$$

(4 marks)

$$
y^{\prime \prime \prime}-y^{\prime}=4 e^{-x}+3 e^{2 x}
$$

c) Solve the equation by the method of undetermined coefficient with the condition: when $\mathrm{x}=0, \mathrm{y}^{\prime}=-1, \mathrm{y}^{\prime \prime}=2$
(10 marks)
Question Three

$$
\mathrm{L}^{-1}\left\{\frac{5 s+1}{s^{2}-s-12}\right\}
$$

a) Determine

$$
\frac{d x}{d t}-2 x=4
$$

b) Solve the differential equation given that $\mathrm{x}=1$ at $\mathrm{t}=0$ by laplace transterm method
$f_{1}=\cos x \quad f_{2}=\sin x$
c) Show that and = are linearly independent solutions of the differential equation:

$$
y^{\prime \prime}+y=0
$$

$$
\begin{equation*}
x^{2}(1-x) y^{\prime \prime}+(1-x) y^{\prime}+y=0 \tag{3marks}
\end{equation*}
$$

d) Consider the differential equation find the singular points of the above differential equation and determine whether they are regular or irregular.
(4 marks)

$$
x^{3} y^{\prime \prime}-6 x y^{\prime}+12 y=0
$$

e) Show that the equation has linearly independent solutions each of the form

$$
\begin{equation*}
y=x^{r} \tag{4marks}
\end{equation*}
$$

Question Four

a) Find a series solution of the differential equation

$$
y^{\prime \prime}+x^{2} y^{\prime}+y=0 \quad \text { about the point } \mathrm{x}=0
$$

b) Find two independent series solutions of the following Bessel equation of order one by method of frobenious about the origin

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

Question Five

a) Briefly explain the difference between the degree and order of a differential equation (2 marks)
b) Solve the second order differential equation:

$$
y \frac{d^{2} y}{d x^{2}}=2\left(\frac{d y}{d x}\right)^{2}-8 \frac{d y}{d x}
$$

c) The velocity of a particle moving along the x-axis is proportional to x. At time $t=0$, the particle is located at $\mathrm{x}=3$ and at time $\mathrm{t}=12$ seconds its at $\mathrm{x}=6$. Find its position when $\mathrm{t}=6$.

