Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING

BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

SMA 2278/AMA 4303: ORDINARY DIFFERENTIAL EQUATIONS
 SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: AUGUST 2016
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Find the particular solution of the function and express the solution in its simplex form:

$$
\begin{align*}
& \frac{1+x^{2}}{1+y^{2}}=\frac{d y}{d x} \\
& \tag{4marks}\\
& \\
& \\
& \\
& \\
& \\
&
\end{align*}
$$

b) Using separable functions, solve with $y(0)=4$

$$
f(x y), e^{y / x}+\tan y / x
$$

c) Show that
is homogeneous

$$
y \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0 \quad y(0)=1, \quad y^{\prime}(0)=0
$$

d) Solve

$$
\left(D^{2}+5\right)(\sin 4 x)
$$

e) Evaluate

$$
\begin{equation*}
\left(x^{4}-x^{2}\right) y^{\prime \prime}+(2 x+1) y^{\prime}+x^{2}(x+1) y=0 \tag{2marks}
\end{equation*}
$$

f) Locate the singular points of the differential equation
g) Using a system of linear differential equations, find a general solution of the system:

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=2 x+y
\end{aligned}
$$

h) Solve the following Bernoulli equation:

$$
y^{\prime}+y=e x y^{-2}
$$

Question Two

$$
\begin{equation*}
x^{2} \frac{d y}{d x}-x y=5 x^{6} \tag{4marks}
\end{equation*}
$$

a) Solve given that $\mathrm{y}=-10$ when $\mathrm{x}=1$

$$
\left(3 x y^{4}+x\right) d x+\left(6 x^{2} y^{3}-2 y^{2}+7\right) d y
$$

b) Show that is an exact differential and find its general solution
(7 marks)
c) Solve the differential equation:

$$
\begin{equation*}
\frac{d^{2} y}{d x 2}+2 \frac{d y}{d x}+y=0 \tag{4marks}
\end{equation*}
$$

d) Determine:

$$
\begin{equation*}
L^{-}\left\{\frac{15 s+1}{s 2-s-12}\right\} \tag{5marks}
\end{equation*}
$$

Question Three

$$
y^{\prime \prime}+y=0 \quad y_{1}=\cos x \quad y_{2}=\sin x
$$

a) Show that and equation
b) Determine the singular points and determine the to the differential equation:

$$
\left(1-x^{2}\right) y^{\prime \prime}+y^{\prime}+y=0
$$

$$
x^{2}+y^{2} d x+2 x y d y=0
$$

c) Show that the differential equation

$$
\begin{equation*}
\text { if } y(1)=1 \tag{7marks}
\end{equation*}
$$

Question Four

$$
x y^{\prime}=y+\sqrt{x}
$$

a) Solve the equation
b) Using separable functions solve the equation:

$$
y^{\prime}=\frac{-2 x y+2 x}{x^{2}+1}
$$

$$
y^{\prime \prime}+4 y^{\prime}+3 y=30 e 2 x
$$

c) Use the method of undermined coefficient to find

$$
y^{\prime}=(x+y)^{2}
$$

d) Solve the equation

Question Five

$$
y^{\prime \prime}-16 y^{\prime}=0
$$

a) Find the general solution of

$$
(D+1)(D-1) y=16 e^{3 x}
$$

b) Determine the general solution to
c) Find the particular solution of using assumed integral method of:

$$
y^{\prime \prime}+5 y^{\prime}-y=x^{2}-3 x-35
$$

