

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY INFORMATION TECHNOLOGY
SMA 2271: PARTIAL DIFFERENTIAL EQUATIONS (PDE)
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Consider the differential equation

$$
x u_{x}+y u_{y}=0
$$

obtain the characteristic equations and the characteristic curves.
b) Determine the arc length function for on the interval
c) Solve the following partial differential equation by separation of variables method:

$$
3 \frac{\partial u}{d x}+2 \frac{\partial u}{\partial y}=; u(x, 0)=4 e^{-x}
$$

$$
\begin{equation*}
\frac{d x}{x+y}=\frac{d y}{x+y}=\frac{d z}{-(x+y+2 z)} \tag{5marks}
\end{equation*}
$$

d) Find the integral curve of the equation

$$
\begin{equation*}
z y d x-z x d y-y^{2} d z=0 \tag{4marks}
\end{equation*}
$$

e) Verify that the equation is integrable and hence find the solution to it.
(5 marks)

$$
z=x y
$$

f) Find the equation of the tangent plane to the surface at the point $P(2,3,6)$
g) Find the general solution of the following first order differential equation:

$$
\left(x^{2}+1\right) y^{\prime}+6 x y=x
$$

(4 marks)
h) Give an implicit definition of a surface in R^{3}

Question Two

$$
z(x+y)=4
$$

a) Find the orthogonal trajectories on the conicoid of a conic in which it cut by the system

$$
x-y+z=k
$$

of planes where k is a parameter
b) Solve the differential equation:

$$
\begin{align*}
& x\left(y^{2}-a^{2}\right) d x+y\left(x^{2}-z^{2}\right)-z\left(y^{2}-a^{2}\right) d z=0 \tag{6marks}\\
& x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z
\end{align*}
$$

c) Find the integral surface of the equation which contains the

$$
x+y=0
$$

straight lines

$$
\begin{equation*}
\text { and } \mathrm{z}=1 \tag{5marks}
\end{equation*}
$$

Question Three

$$
\vec{r}(\theta)=a(\cos \theta \vec{i}+\sin \theta \vec{j}) ; a \neq 0,-\infty \theta<\infty
$$

a) Prove that a curve C given by is a regular curve but not a smooth curve
b) Find the integral surfaces to the equations:

$$
\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}
$$

$$
u(x, t) \quad u(x, 0)=f(x) \quad u(0, t)=u(1, t)=0
$$

c) Find
satisfying by the method of separation variables

Question Four

$$
\frac{\partial u}{d t}=c \frac{\partial^{2} u}{\partial x^{2}}
$$

a) Solve using Laplace transforms given the boundary conditions:

$$
\begin{array}{lccc}
t<0, & \mu(x, t)=0 & t>0 & u(o, t)=4 \\
x \rightarrow \infty & u(\infty, t)=0 & t=0 & u(x, 0)=0
\end{array}
$$

$$
\varphi\left(x^{2}+y^{2}+z^{2} x y z\right)=0
$$

b) Form a semi linear Lagrange's equation from

Question Five

a) Solve the following first order partial differential equation:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+u=e^{-x} \tag{6marks}
\end{equation*}
$$

$$
a u x-y u y+y^{2} u=y^{2}
$$

b) Find the general solution of
c) Solve the following equation:

$$
y z(y+z) d x+x z(x+z) d y+x y(x+y) d z=0
$$

