

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY INFORMATION TECHNOLOGY

SMA 2273: APPLIED MATHEMATICS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

- b) Find the maximum possible error in the measurement of the force of an object (mass m) travelling at a m = 4.5kg ± 0.1kg, v = 40m/s ± 1m/s r = 12.5m ± 0.5m velocity v in a circle radius r if and (5 marks)
 c) Use dimensional analysis to give the dimensions of the below quantities
- c) Use dimensional analysis to give the dimensions of the below quantities

 (i) Power
 (ii) Impulse
 (3 marks)

a) State the THREE Newton's Laws of linear motion

Page 1

(3 marks)

Mass C 12kg at the 50cm mark of the metre rule

If she bends her knees and stops in 0.2 seconds

(ii) If she keeps her legs straight and stops in 0.025

f) The following masses hang on a uniform metre rule as follows:

Mass A 10kg at the 10cm mark of the metre rule

Mass B 15kg at the 35cm mark of the metre rule

The metre rule is pivoted at the 60cm mark. A single mass M = 99.5kg balances the three masses A, B and C

(i)	Diagrammatically represent the above information	(2 marks)
(ii)	At what mark of the metre rule is mass M	(4 marks)

d) A girl of mass 50kg jumps onto the ground from a 4m high wall. Calculate the fore on her when she

Question Two

lands:

(i)

e) Define moment of a couple

A ball is fired at a speed of 25.0m/s from ground level at an angle of 30.0° above the horizontal. Using principle of projectiles in two dimensions:

a)	What is the minimum speed of the ball while it is in the air.	(4 marks)
b)	How far does the ball travel	(6 marks)
c)	When does the ball's speed equal 22.5m/s	(5 marks)
d)	What is the ball's height when it has travelled 41m	(5 marks)

e) Broadways produces two types of bread one at a cost of 50 shillings per loaf, the other at a cost of 60

Question Three

- **a)** State the Law of conservation of momentum
- **b)** Consider a body A having mass m and let u and v be the velocities of A before and after collision respectively. Consider another body B having mass m' and let u' and v' be the velocities of B before and after collision respectively. Using the above Information, show that: mu + m'u' = mv + m'v'

NOTE: Use diagrams where possible.

- **c)** mass A of 12kg moving with a velocity of 10m/s collides with a mass B of 8kg moving in the opposite direction at 6m/s. Calculate:
 - (i) The final velocity in the case where the two masses stick together on Impact, (3 marks)
 - (ii) Now assume that the masses above do not stick together but mass A moves on with a velocity of 0.5m/s. Calculate the velocity of B.(3 marks)

Page 2

(9 marks)

(2 marks)

(4 marks)

(1 mark)

(2 marks)

d) A horizontal jet of water leaves a horse pipe and strikes a wall horizontally with a velocity of 20m/s. If the end of the pipe has a diameter of 2cm, calculate the force that will be exerted on the wall.

(3 marks)

(3 marks)

(2 marks)

~

 \wedge

n

Question Four

- a) A force of magnitude 80N acts along the positive x-axis and another 50N force is inclined at 120o to the horizontal surface. Find the resultant force and its direction from the 80N force. **(5 marks)**
- b) A uniform ladder of weight 400N and length 4m rests with its foot on a rough horizontal ground with coefficient of friction of 0.4. The top rests on a smooth vertical surface. Find the angle of inclination of the ladder with the horizontal just before it slips (4 marks)
- **c)** Two masses of 3kg and 2kg are attached to either end of an inextensible string which passes over a frictionless pulley. The system is released so that it moves freely. Calculate:
 - (i) The acceleration of the system
 - (ii) The tension in the string
- d) A uniform beam AB of length 4m and mass 10kg is freely hinged to a fixed pivot at A and supported in a horizontal position by a light string of length 5m attached to the beam at B and to a point 3m vertically above A. Find the tension in the string and the reaction at the pivot. (5 marks)

Question Five

			V1 = 7i - 2j + 6k	
a)	A cons	stant force F acts on a body of mass 40kg and changes its velocity from		, to
	$V_2 = 1$	$1\hat{i}+6\hat{j}-2\hat{k}$		
	(i)	The magnitude of the force F	(5 marks)	
	(ii)	The work done on the body in 20 seconds	(5 marks)	
b)	A body	y moves around a circle of radius 20m, if its tangential speed is 40m/s, find	1:	
	(i)	The angular speed	(2 marks)	
	(ii)	The angular acceleration	(1 mark)	
	(iii)	The normal acceleration	(1 mark)	
	(iv)	The arc covered after a time $t = 10$ seconds	(3 marks)	
	(v)	The angle subtended after a time t = 10seconds	(3 marks)	
	(vi)	The number of revolutions after a time $t = 10$ seconds	(2 marks)	