

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 BACHELOR OF TECHNOLOGY INFORMATION TECHNOLOGY

SMA 2273: APPLIED MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) State the THREE Newton's Laws of linear motion
b) Find the maximum possible error in the measurement of the force of an object (mass m) travelling at a

$$
m=4.5 \mathrm{~kg} \pm 0.1 \mathrm{~kg}, v=40 \mathrm{~m} / \mathrm{s} \pm 1 \mathrm{~m} / \mathrm{s} \quad r=12.5 \mathrm{~m} \pm 0.5 \mathrm{~m}
$$

velocity v in a circle radius r if and
c) Use dimensional analysis to give the dimensions of the below quantities
(i) Power
(ii) Impulse
(3 marks)
d) A girl of mass 50 kg jumps onto the ground from a 4 m high wall. Calculate the fore on her when she lands:
(i) If she bends her knees and stops in 0.2 seconds
(4 marks)
(ii) If she keeps her legs straight and stops in 0.025
e) Define moment of a couple
f) The following masses hang on a uniform metre rule as follows:

Mass A 10 kg at the 10 cm mark of the metre rule
Mass B 15 kg at the 35 cm mark of the metre rule
Mass C 12 kg at the 50 cm mark of the metre rule
The metre rule is pivoted at the 60 cm mark. A single mass $M=99.5 \mathrm{~kg}$ balances the three masses A, B and C
(i) Diagrammatically represent the above information
(2 marks)
(ii) At what mark of the metre rule is mass M

Question Two

A ball is fired at a speed of $25.0 \mathrm{~m} / \mathrm{s}$ from ground level at an angle of 30.0° above the horizontal. Using principle of projectiles in two dimensions:
a) What is the minimum speed of the ball while it is in the air.
b) How far does the ball travel
c) When does the ball's speed equal $22.5 \mathrm{~m} / \mathrm{s}$
d) What is the ball's height when it has travelled 41m
e) Broadways produces two types of bread one at a cost of 50 shillings per loaf, the other at a cost of 60

Question Three

a) State the Law of conservation of momentum
(2 marks)
b) Consider a body A having mass m and let u and v be the velocities of A before and after collision respectively. Consider another body B having mass m' and let u ' and v ' be the velocities of B before and after collision respectively. Using the above Information, show that:
$m u+m^{\prime} u^{\prime}=m v+m^{\prime} v^{\prime}$

NOTE: Use diagrams where possible.
(9 marks)
c) mass A of 12 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ collides with a mass B of 8 kg moving in the opposite direction at $6 \mathrm{~m} / \mathrm{s}$. Calculate:
(i) The final velocity in the case where the two masses stick together on Impact, ($\mathbf{3}$ marks)
(ii) Now assume that the masses above do not stick together but mass A moves on with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of B.
(3 marks)
d) A horizontal jet of water leaves a horse pipe and strikes a wall horizontally with a velocity of $20 \mathrm{~m} / \mathrm{s}$. If the end of the pipe has a diameter of 2 cm , calculate the force that will be exerted on the wall.
(3 marks)

Question Four

a) A force of magnitude 80 N acts along the positive x -axis and another 50 N force is inclined at 120 o to the horizontal surface. Find the resultant force and its direction from the 80 N force. (5 marks)
b) A uniform ladder of weight 400 N and length 4 m rests with its foot on a rough horizontal ground with coefficient of friction of 0.4 . The top rests on a smooth vertical surface. Find the angle of inclination of the ladder with the horizontal just before it slips
(4 marks
c) Two masses of 3 kg and 2 kg are attached to either end of an inextensible string which passes over a frictionless pulley. The system is released so that it moves freely. Calculate:
(i) The acceleration of the system
(3 marks)
(ii) The tension in the string
d) A uniform beam AB of length 4 m and mass 10 kg is freely hinged to a fixed pivot at A and supported in a horizontal position by a light string of length 5 m attached to the beam at B and to a point 3 m vertically above A. Find the tension in the string and the reaction at the pivot.

Question Five

$$
V 1=7 \hat{i}-2 \hat{j}+6 \hat{k}
$$

a) A constant force F acts on a body of mass 40 kg and changes its velocity from
, to $V_{2}=11 \hat{i}+6 \hat{j}-2 \hat{k}$
in 20 seconds. Calculate
(i) The magnitude of the force F
(ii) The work done on the body in 20 seconds
b) A body moves around a circle of radius 20 m , if its tangential speed is $40 \mathrm{~m} / \mathrm{s}$, find:
(i) The angular speed
(ii) The angular acceleration
(iii) The normal acceleration
(iv) The arc covered after a time $t=10$ seconds
(v) The angle subtended after a time $t=10$ seconds
(vi) The number of revolutions after a time $t=10$ seconds

