TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN CIVIL ENGINEERING
BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2015
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

a) Find the equation
b) Eliminate the arbitrary function from the equation

$$
\phi\left(x+y+z, \quad x^{2}+y^{2}-z^{2}\right)=0
$$

c) Find the general solution of the partial differential equation

$$
x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}+z^{2}=0
$$

d) Find the integral surface of

$$
y^{2} p-x y q=x(z-2 y)
$$

(6 marks)

$$
x y=x+y, z=1
$$

$$
x z^{3} d x-z d y+2 y d z=0
$$

e) Test for integrability of the equation and hence solve it

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x}+z=0 \quad z=e^{y} \quad \frac{\partial z}{\partial x}=1 \tag{4marks}
\end{equation*}
$$

f) Solve given that $x=0, \quad$ and

Question Two

$$
U_{x x}+2 U_{x y}-3 U_{y y}=0
$$

a) Find the characteristics of the equation
b) Reduce the equation to the appropriate canonical form
c) Obtain its general solution

Question Three

a) Using Charpits auxiliary equations, find the complete integral of the differential equation $\left(p^{2}+q^{2}\right) y=q z$

$$
\begin{equation*}
z=a x^{3}+b x^{2} y+c x y^{2}+\frac{d y^{4}}{x} \tag{15marks}
\end{equation*}
$$

b) Eliminate a, b, c and d from

Question Four

a) Find the orthogonal trajectories on the conicoid $(x+y) z=1$ of the conics in which its cut by the

$$
x-y+z=k
$$

system of planes where K is a parameter

$$
x^{2} p^{2}+y^{2} q^{2}=z^{2}
$$

b) Solve

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}
$$

c) Solve

Question Five

$$
\frac{d x}{x^{2}\left(y^{3}-z^{3}\right)}=\frac{d y}{y^{2}\left(z^{3}-x^{3}\right)}=\frac{d z}{z^{2}\left(x^{3}-y^{3}\right)}
$$

a) Find the integral curve of the equation
(8 marks)
b) A rod whose surface is measured has a length of 3 units. The end of the rod is kept at $0^{\circ} \mathrm{C}$ and its

$$
u(x, 0)=5 \sin 4 \pi x-3 \operatorname{sn} 8 \pi x+2 \sin 10 \pi x
$$

initial temperature at any point $\mathrm{x}, 0<\mathrm{x}<3$ is given by
. Find the temperature at any given time t

