
 TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health
 Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSME 11M)

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

SECTION A (COMPULSORY)

Question One

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1 \quad y^{2}=\frac{4}{\theta} \quad \theta
$$

a) Show that the orthogonal trajectories of the family of curves are $\begin{aligned} & \text { where is a } \\ & \text { function of } \mathrm{x}\end{aligned}$
(8 marks)
b) Find the partial differential equation arising from functions.
c) Find a complete solution of the partial differential equation:

$$
(m z-n y) \frac{\delta z}{\delta x}+(n x-1 z) \frac{\delta z}{\delta y}=l y-m x
$$

d) Find the direction cosines of the tangent at the point to the cone $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha, z=k,(k=)$ cons $\tan t$

$$
(x, y, z)
$$

$$
x^{2}+y^{2}=z^{2} \tan ^{2} \alpha, z=k,(k=) \text { cons } \tan t
$$

$$
\begin{equation*}
\left(D_{x}^{2}-6 D_{x} D_{y}+9 D y^{2}\right) z=\cos (4 x-5 y)+12 x y \tag{3marks}
\end{equation*}
$$

e) Find the general solution

SECTION B (Answer any TWO questions from this section)

Question Two

a) Solve the equation:

$$
\frac{\delta^{2} z}{\delta x^{2}}+2 \frac{\delta^{2} z}{\delta x \delta y}-3 \frac{\delta^{2} z}{\delta y^{2}}-\frac{\delta z}{\delta x}-7 \frac{\delta z}{\delta y}-2 z=0
$$

(10 marks)
b) Find the integral surface of the linear partial differential equation:

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z
$$

(10 marks)

Question Three

$$
x^{2}+y^{2}+2 f y z+d=0
$$

a) Find the orthogonal trajectories on the surface of its curves of intersection with the planes parallel to the plane $\mathrm{z}=0$
(10 marks)
b) Find the general solution of:

$$
\begin{aligned}
& y_{1}^{\prime}=2 y,-3 y_{2} \\
& y_{2}^{\prime}=y,+6 y^{2}
\end{aligned}
$$

(10 marks)

Question Four

$$
\frac{\delta^{2} \mu}{\delta x^{2}}=\frac{1}{c 2} \frac{\delta^{2} u}{\delta t^{2}} \quad c^{2}=\frac{\tau}{\rho}
$$

a) Derive the wave equation for a vibrating string, namely where
(7 marks)
$u(o, t)=u(L, t)=0 t \geq 0$
$u(x, 0)=f(x), 0 \leq x \leq L$
$u t t_{t=0}=g(x), 0 \leq x \leq L$
b) Solve the wave equation in (a) above satisfying the Cauchy conditions and g are given functions and L is a given constant.
where f

Question Five

a) A metal plate coincides with the square in the xy-plane whose vertices are point $s(0,0),(1,0),(1,1)$ and $(0,1)$. The two faces of the sheet are insulated and the metal sheet is so thin that heat flow in it can be regarded as two dimensional. Edges parallel to the x -axis are insulated and the left edge

$$
u(1, y)=f(y)
$$

manifanied at constant temperature $0^{\circ} \mathrm{C}$. If the temperature distribution is manifained along the right hand edge, find the steady state temperature distribution throughout the sheet.
b) Evaluate:

$$
\mathrm{L}\left\{\frac{\delta u}{\delta t}\right\}
$$

(i)

$$
\mathrm{L}\left\{\frac{\delta^{2} u}{\delta t^{2}}\right\}
$$

(ii)

