

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

CERTIFICATE IN BUILDING & CIVIL ENGINEERING (CBCE 13M)

APS 1150: PHYSICAL SCIENCE FOR ENGINEERS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: AUGUST 2016 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of **FIVE** questions
Answer question **ONE (COMPULSORY)** and any other **TWO** questions
Maximum marks for each part of a question are as shown
This paper consists of **THREE** printed pages

Mobile phones are not allowed inside the examination room Do NOT write on the question paper

Question One (Compulsory)

a)	State	the	fol	lowing:

(i) Kirchhoff Law on current

(ii) Kirchhoff Law on voltage

(4 marks)

b) Describe the factors that affect resistance of a wire.

(4 marks)

c) Define the following terms stating their SI units:

- (i) Charge
- **(ii)** Electromotive force
- (iii) Capacitance

(iv) Resistivity

(4 marks)

d) Calculate the resistance of a copper wire of 240m with a cross-section area of 1.5mm² (for copper = Ω

$$0.0175 \times 10^{-6}$$
 m)

(8 marks)

Question Two

a) Using graphical illustrations, state and explain the Ohm's Law

(6 marks)

b) Two resistors of 100 and 150 are connected in series and the connected in parallel to a 130 resistor. The circuit is supplied with 15v D.C.. Determine:

- (i) Total current in the circuit
 - Ω
- (ii) Current through 130 resistor

 Ω

- (iii) Voltage drop across 150 resistor
- (iv) Total power in the circuit

(8 marks)

c) With the aid of a circuit diagram, explain the operation of a half-wave rectifier circuit. (6 marks)

Question Three

a) Explain the following:

- (i) Rectification
- (ii) Voltage regulation

(4 marks)

b) With the aid of symbolic diagrams. Explain the following with regard to diodes:

- (i) Forward Biasing
- (ii) Reverse Biasing

(6 marks)

μΕ μΕ μΕ

c) Three capacitors of 470 , 300 and 150 are connected in series and then connected in parallel

μF

to a 100	capacitor.	The circ	uit is sup	plied with	12V D.C.	Determine:
to a roo	cupacitor.	THE CHE	ait io bap	piica wiai	12 1 2.0.	Determine

- (i) Total capacitance in the circuit
- (ii) Charge across the circuit

μF

- (iii) Current through 100 capacitor
- (iv) Total energy in the circuit

(10 marks)

Question Four

- **a)** With the aid of symbolic diagrams, describe:
 - **(i)** Step-up transformer
 - (ii) Step-down transformer

(4 marks)

- **b)** Explain the following
 - (i) Frequency
 - (ii) Period
 - (iii) Amplitude

(6 marks)

- c) A transformer of 8:1 turns ratio is supplied with 110v, produces 200w at the output. Calculate:
 - (i) Primary current
 - (ii) Secondary current
 - (iii) Secondary voltage

(6 marks)

d) Using symbols differentiate between, P-N-P and N-P-N transistors

(4 marks)

Question Five

a) Explain the factors which affect the capacitance of a capacitor.

(4 marks)

- **b)** Describe the following terms:
 - (i) Mutual induction
 - (ii) Self induction

(6 marks)

c) With the aid of a circuit diagram. Explain the operation of a temperature stabilized single transistor $II = I \cdot P + II \cdot C + I \cdot P$

$$U_{CC} = I_C R_C + U C_E + I_E R_E$$

amplifier. Show that

(10 marks)