

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

CERTIFICATE IN BUILDING & CIVIL ENGINEERING (CBCE 14S)

APS 1501: PHYSICAL SCIENCE FOR ENGINEERS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

- **a)** Define the following terms:
 - (i) Time constant
 - (ii) Transmission ratio

(iii) Mutual inductance

(10 marks)

b) With the aid of a graph, explain the Ohm's law.

(2 marks)

c) Using symbols differentiate between step-up and step-down transformers.

(2 marks)

- **d)** Calculate the maximum and the minimum resistance given the colour codes below (all answer in $K\Omega$)
 - (i) Red, green, yellow
 - (ii) Blue, black, purple, silver
 - Yellow, red, yellow, gold

(6

marks)

Question Two

- a) Three capacitors of 30µF, 20µF and 3600µF capacitor are connected-parallel. The network is then supplied with 30v d.c.
 - (i) Draw the circuit diagram
 - (ii) Calculate the total capacitance in the circuit
 - Charge across the 3600 µF capacitor
 - (iv) Energy in the circuit

(8 marks)

- **b)** Define the following terms:
 - (i) Intrinsic semiconductor
 - (ii) Extrinsic semiconductor
 - (iii) **Doping**

(6

marks)

c) With the aid of circuit diagrams, explain the following with regard to diodes:

(i) Forward biasing

(ii) Reverse biasing

(6 marks)

Question Three

a) Using circuit diagram and wave form diagrams, explain the operation of a full wave bridge rectifier.

(10 marks)

- **b)** Three resistors of 200K Ω , 100 K Ω and 80 K Ω , are, connected parallel, they are then connected in series to 50 K Ω and 75 K Ω resistors. The network is then supplied with 50V d.c
 - (i) Calculate the total resistance in circuit
 - (ii) Total current in the circuit
 - Current through 200K, 100K and 80K resistors
 - (iv) Total power dissipated by the circuit

(10 marks)

Oi	ıestion	Four
υι	iesuon	rour

a `	Define	tho	f_{Ω}	Owing	tarme.
a,	Demie	uie	1011	gillwo.	terms.

- (i) Depletion layer
- (ii) Base
- (iii) **Emitter**

(iv)Collector

(4 marks)

- **b)** With the aid of circuit diagram, explain the three bipolar transistor configurations. (6 marks)
- **c)** Using graph sketches explain the following bipolar transistor characteristic:
 - (i) Input
 - (ii) Output characteristics
 - Transfer characteristics marks)

(10

Question Five

- **a)** Define the following terms:
 - (i) Resistance
 - (ii) Reactance
 - (iii) Impedance marks)

(6

b) Determine the colour codes for the following resistor:

```
1.9M\Omega \pm 20\%
```

- **(i)** $330k\Omega \pm 10\%$
- (ii) $470\Omega\pm5\%$
- (iii) $4.7M\Omega \pm 2\%$
- (iv) (4 marks)
- c) A capacitor is connected in series to a resistor of $100 \text{K}\Omega$ for charging. If took $0.05 \mu/\text{s}$ to charge the capacitor to its time constant. Calculate the value of that capacitor. (4 marks)
- **d)** A transformer with a turns ratio of 8:1 is supplied with 110V, 60Hz. If the secondary current is 10A. Calculate:
 - (i) Primary current
 - (ii) Secondary voltage
 - Input power (iii)

(6 marks)