TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health
 Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN BUILDING \& CIVIL ENGINEERING (CBCE 14S)
APS 1501: PHYSICAL SCIENCE FOR ENGINEERS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Time constant
(ii) Transmission ratio
(iii) Mutual inductance
(10 marks)
b) With the aid of a graph, explain the Ohm's law.
c) Using symbols differentiate between step-up and step-down transformers.
d) Calculate the maximum and the minimum resistance given the colour codes below (all answer in $\mathrm{K} \Omega$)
(i) Red, green, yellow
(ii) Blue, black, purple, silver
(iii) Yellow, red, yellow, gold marks)

Question Two

a) Three capacitors of $30 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$ and $3600 \mu \mathrm{~F}$ capacitor are connected-parallel. The network is then supplied with 30 v d.c.
(i) Draw the circuit diagram
(ii) Calculate the total capacitance in the circuit
(iii) Charge across the $3600 \mu \mathrm{~F}$ capacitor
(iv)Energy in the circuit
(8 marks)
b) Define the following terms:
(i) Intrinsic semiconductor
(ii) Extrinsic semiconductor
(iii) Doping marks)
c) With the aid of circuit diagrams, explain the following with regard to diodes:
(i) Forward biasing
(ii) Reverse biasing

Question Three

a) Using circuit diagram and wave form diagrams, explain the operation of a full wave bridge rectifier.
(10 marks)
b) Three resistors of $200 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$ and $80 \mathrm{~K} \Omega$, are, connected parallel, they are then connected in series to $50 \mathrm{~K} \Omega$ and $75 \mathrm{~K} \Omega$ resistors. The network is then supplied with 50 V d.c
(i) Calculate the total resistance in circuit
(ii) Total current in the circuit
(iii) Current through $200 \mathrm{~K}, 100 \mathrm{~K}$ and 80 K resistors
(iv) Total power dissipated by the circuit

Question Four

a) Define the following terms:
(i) Depletion layer
(ii) Base
(iii) Emitter
(iv)Collector
(4 marks)
b) With the aid of circuit diagram, explain the three bipolar transistor configurations.
c) Using graph sketches explain the following bipolar transistor characteristic:
(i) Input
(ii) Output characteristics
(iii) Transfer characteristics marks)

Question Five
a) Define the following terms:
(i) Resistance
(ii) Reactance
(iii) Impedance marks)
b) Determine the colour codes for the following resistor:

$$
1.9 M \Omega \pm 20 \%
$$

(i)

$$
330 k \Omega \pm 10 \%
$$

(ii)

$$
470 \Omega \pm 5 \%
$$

(iii)

$$
4.7 M \Omega \pm 2 \%
$$

(iv)
c) A capacitor is connected in series to a resistor of $100 \mathrm{~K} \Omega$ for charging. If took $0.05 \mu / \mathrm{s}$ to charge the capacitor to its time constant. Calculate the value of that capacitor.
d) A transformer with a turns ratio of $8: 1$ is supplied with $110 \mathrm{~V}, 60 \mathrm{~Hz}$. If the secondary current is 10 A . Calculate:
(i) Primary current
(ii) Secondary voltage
(iii) Input power

