

TECHNICAL UNVERSITY OF MOMBASA

Faculty of Engineering & Technology in Conjunction with Kenya Institute of Highways and Building Technology (KIHBT)

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

HIGHER DIPLOMA IN ELECTRICAL & ELECTRONIC ENGINEERING

EEP 3210: PROCESS CONTROL & AUTOMATION

END OF SEMESTER EXAMINATION SERIES: AUGUST 2014 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

- A non-programmable Scientific Calculator

This paper consists of **FOUR** questions. Answer any **THREE** questions

All questions carry equal marks

Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

© 2014 - Technical University of Mombasa

Question One

- a) Explain what is meant by the term Controller Tuning.
- **b)** Consider the control system in figure 1b in which a PID controller is used to control the sytem. The PID controller has the transfer function:

$$ac = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

Apply the Ziegler ultimate cycle tuning rule to determine the values of parameters K_p , T_i and T_d . (16 marks)

Question Two

- **a)** Given $K_p = 5$, $K_1 = 0.75-1$, $K_D = 0.55$ and $P_1(0) = 20\%$ for a PID controller where K_p is the proportional gain, K_1 is the integral gain, K_D is the derivative gain constant and $P_1(0)$ is controller output with no error. Plot the controller output for the error response in figure 2(a).
 - 1 2 3 4 5 6 7

(14 marks)

(4 marks)

b)	A liquid level control system linearly converts displacement of 2-3 meetings into control signal. A relay closes 12mA and opens at 10Ma.(i) Determine the relationship between the displacement and the relay current.(ii) Find the neutral zone	a 4 - to 20mA (6 marks)
Question Three		
a)	Define the term statistical process control.	(4 marks)
b)	 Explain the following as applied to statistical process curlurt: (i) Time series model (ii) Multivavate model (iii) Stochastic model (iv) Artificial Neural Network 	(16 marks)
Question Four		
a)	Name the THREE robot paradigms and draw the relationship between the primitives.	(9 marks)
b)	Describe the difference between:(i) Tele presence and semi-autonomous control(ii) Direct perception and recognition	(8 marks)
c)	From the given figure 4 compute the vector obtained by rotating vector $\stackrel{AP_1}{about}$	oy zodegrees.

Figure 4

(3 marks)