

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF MATHEMATICS & COMPUTER SCIENCE

AMA 4314: REAL ANALYSIS I

END OF SEMESTER EXAMINATION **SERIES: DECEMBER 2014** TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables -
 - Scientific Calculator

This paper consist of **FIVE** questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

	$\forall a \in \mathfrak{R}, -a$		
a)	Show that	is unique under addition	(4 marks)
b)	$x \neq 0$ Show that if	, then $x^2 > 0$ and hence show that $1 > 0$	(4 marks)
C)	$\forall x, y \in$ Show that $x \cdot (-y) = -$		(2 marks)
d)	Use the axioms of	$\forall x \in \Re$ numbers to show that $0.x = 0$	(3 marks)

e) Determine whether is closed or open. (3 marks)
f) Show that every subset of a countable set is countable (4 marks)
g) Use Cauchy's root test to determine the convergence of:

$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$$
(3 marks)
i) Sind the sum of the series:
i) Obtain the derived sets of the following:
{ $x \in \Re$: $0 < x < 1$ }
(1 mark)
(2 marks)
(1 mark)
(3 marks)
(1 mark)
(1 mark)
Question Two
3 Show that every convergent sequence is a Cauchy sequence
(3 marks)
(4 marks)
(4 marks)
(5 marks)
(6 marks)
(6 marks)
(6 marks)
(7 marks)
(8 marks)
(9 marks)
(9 marks)
(1 mark)
(1 mark)
Question Two
3 Show that the union of any finite number of closed sets is closed
(6 marks)
(6 marks)
(7 marks)
(8 marks)
(9 mar

$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$
 (4 marks)

d) Show that a sequence of real numbers converges to a real number if and only if all its subsequences converges to the same real number (5 marks)

Question Four

 $f(x) = 1 + \sin x \qquad 0 \le x \le 2\pi$ a) Let for Test whether f is Riemann integrable given partitions as $\begin{cases} 0, \ 2\pi/3, \pi, 4\pi/3, \ 2\pi \end{cases}$

(7 marks)

(5 marks)

$$f(x) = x$$

$$\int_{0}^{1} x \, dx = \frac{1}{2}$$

b) Show thatis Riemann integrable on [0, 1] and hence find(8 marks)c) Show that Riemann integral is linear(5 marks)

Question Five

a) State and prove the sandwich theorem.

$$f(x) = x^2 + 2x + 6$$

b) Show that is continuous at x = 3 (5 marks)

d) Use Leibnitz test to test the convergence of:

$$\sum_{n=1}^{\infty} \frac{1}{n} (-1)^n$$

(5 marks)