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   SECTION A (COMPULSORY) 

Question One 

a) Differentiate 
235 2  xxy

from first principles (5 marks)

b) Given that 
  12  xxf

 and 
  xxg 53 

 find 
)(xfog

and 
  1xfog

(5 marks)

c) Find the domain and the range of 
   53  xxy

(4 marks)
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d) Find 
dx

dy

given that 
xxy 2cos3sin 

 (3 marks)
e) Evaluate the following limits:

(i)
xx

xx
x 2

124
lim

2

2

2 




(2 marks)

(ii)

2

3

6

12lim

x

xx

x




(2 marks)

f) Examine the continuity of 

  652  xxxf

at x = 3 (4 marks)

g) Investigate whether 

 








134

1,2

ifxx

xx
xf

is differentiable at x = 1 (3 marks)

h) Find 
dx

dy

given that 

2xu 
and 

uy cos

(2marks) SECTION B (Answer any TWO questions from this section) 

Question Two 

a) Differentiate the following functions:

(i)
12x

2-3x
y




(3 marks)

(ii)
 22t-tey 2-t 

(3 marks)

(iii)
 tansecy 

(3 marks)

b) Find and classify the critical points of the curve 
8-9x6x-xy 23 

(8 marks)

Question Three

a) Define continuity of a function f at a point x = a (3 marks)

b) A gas is escaping from a spherical balloon at the rate of  
/min2ft 3

.  How fast is the surface area
shrinking when the radius is 12ft. (5 marks)
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c) If 
,x12yxy 222 
 show that:  

22

1

dx

dy




at (1, 1) (5 marks)

d) Differentiate by first principles 
12x 

(7 marks)

Question Four 

a) A curve is defined parametrically by:

2

2

1

1
,

t1

2t
y

t

t
x







 
Find its gradient at t = 1 (7 marks)

b) Find  
h(x)gf 

given that  
  1 xxf

 
2)( 2  xxg

and  
3)(  xxh

.  Hence find the range of
h(x)gf 

(6 marks)

c) Show that the normal to the curve 
,5t6t3y 3
draw the point 

 3
11,

 passes through the origin.
(7 marks)

Question Five 

a) Find the integrals of the following functions:

(i)
xx

2

(2 marks)

(ii)

x
x

sin
1 

(2 marks)

(iii)
   21  xx

(2 marks)

(iv)
  26x

(1 mark)

b) Find the area enclosed by the curve 
23 2  xy

the x-axis and the lines at x = 3 and x = 5.
(5 marks)

c) A particle P moves in a straight line AB.  Its distance x, from A at the end of t seconds is given by
2036152 23  tttx

.  Prove that the velocity of P becomes zero at two points C and D in AB and
it acceleration becomes zero at one point E at a time midway between times of arrival at C and D.

(18 marks)
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