

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE/TECHNOLOGY IN INFORMATION TECHNOLOGY/

SMA 2101/SMA 2172: CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question One

$$
y=5 x^{2}-3 x+2
$$

a) Differentiate
from first principles
(5 marks)

$$
f(x)=2 x-1 \quad g(x)=3-5 x \quad f o g(x) \quad f o g(x)^{-1}
$$

b) Given that and find and (5 marks)

$$
y=\sqrt{(x-3)(x+5)}
$$

c) Find the domain and the range of

$$
y=\sin 3 x+\cos 2 x
$$

d) Find given that
(3 marks)
e) Evaluate the following limits:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}-2 x}
$$

(i)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{3}+2 x-1}{6 x^{2}} \tag{2marks}
\end{equation*}
$$

(2 marks)
(ii)

$$
f(x)=\left|x^{2}-5 x+6\right|
$$

f) Examine the continuity of

$$
\begin{equation*}
\text { at } x=3 \tag{4marks}
\end{equation*}
$$

$$
f(x)=\left\{\begin{array}{cc}
x^{2}, & x<1 \\
4-3 x & \text { if } x \geq 1
\end{array}\right.
$$

g) Investigate whether \quad is differentiable at $\mathrm{x}=1$

$$
\frac{d y}{d x} \quad u=x^{2} \quad y=\cos u
$$

h) Find given that and
(2marks) SECTION B (Answer any TWO questions from this section)

Question Two

a) Differentiate the following functions:

$$
y=\frac{3 x-2}{\sqrt{2 x+1}}
$$

(i)

$$
y=e^{-t}\left(t^{2}-2 t+2\right)
$$

(ii)

$$
\mathrm{y}=\sec \theta \tan \theta
$$

(iii)

$$
y=x^{3}-6 x^{2}+9 x-8
$$

b) Find and classify the critical points of the curve

Question Three

a) Define continuity of a function f at a point $x=a$
b) A gas is escaping from a spherical balloon at the rate of $2 \mathrm{ft}^{3} / \mathrm{min}$. How fast is the surface area shrinking when the radius is 12 ft .
(5 marks)

$$
y^{2}+x^{2}=2 y \sqrt{1+x^{2}}, \quad \frac{d y}{d x}=\frac{1}{\sqrt{2}-2}
$$

c) If show that: at $(1,1)$
(5 marks)

$$
\sqrt{2 x+1}
$$

d) Differentiate by first principles

Question Four
a) A curve is defined parametrically by:

$$
\begin{equation*}
\mathrm{y}=\frac{2 \mathrm{t}}{1+\mathrm{t}}, \quad x=\frac{1-t^{2}}{1+t^{2}} \tag{7marks}
\end{equation*}
$$

Find its gradient at $\mathrm{t}=1$

$$
\mathrm{f} \bullet \mathrm{~g} \bullet \mathrm{~h}(\mathrm{x}) \quad f(x)=\sqrt{x-1} \quad g(x)=x^{2}+2 \quad h(x)=x+3
$$

b) Find given that and . Hence find the range of $\mathrm{f} \bullet \mathrm{g} \bullet \mathrm{h}(\mathrm{x})$

$$
3 y=6 t-5 t^{3}, \quad(1,1 / 3)
$$

c) Show that the normal to the curve
Question Five
a) Find the integrals of the following functions:
c) Show that the normal to the curve
Question Five
a) Find the integrals of the following functions:

$$
\frac{2}{x \sqrt{x}}
$$

(i) draw the point (7 marks)

$$
\frac{1}{x}+\sin x
$$

(2 marks)
(ii)

$$
(x+1)(x+2)
$$

(iii)

$$
(x-6)^{2}
$$

(iv)
(1 mark)

$$
y=3 x^{2}+2
$$

b) Find the area enclosed by the curve the x -axis and the lines at $\mathrm{x}=3$ and $\mathrm{x}=5$.

> (5 marks)
c) A particle P moves in a straight line $A B$. Its distance x, from A at the end of t seconds is given by $x=2 t^{3}-15 t^{2}+36 t+20$
. Prove that the velocity of P becomes zero at two points C and D in AB and it acceleration becomes zero at one point E at a time midway between times of arrival at C and D .
(18 marks)

