# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE 

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS

# UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY 

## SMA 2104: MATHEMATICS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION<br>SERIES: OCTOBER 2011<br>TIME: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions This paper consist of FOUR printed pages

## QUESTION ONE- Compulsory (30 MARKS)

(a) If $x=\log _{9} 5 \quad y=\log _{3} 5 \quad y$ and $\quad x$ find in terms of .
(b) The second, fourth and seventh terms of an arithmetic series are the first three consecutive terms of a geometric series. Find:
(i) The common ratio
(4 marks)
(ii) The sum of the first six terms of the geometric series if the common difference of the arithmetic series is 2 .
(c) Determine the and intercepts and the minimum or maximum of the function

$$
f(x)=3 x^{2}-17 x+10 \quad f(x)
$$

. Hence sketch the graph of the function

$$
x^{2} y^{10} \quad(x+2 y)^{12}
$$

(d) (i) Find the coefficient of the term
in the expansion of
(ii)Use Binomial expansion up to the fourth term to find the value of
(2 marks)

$$
\sin A=\frac{4}{5} \quad \tan B=\frac{5}{12}
$$

(e) Given that and where A is an obtuse angle and B is an acute angle. Find,

$$
\cos (A+B)
$$

without using mathematics tables or calculators,
(f) Find the interquartile range for the data:
$3,6,7,5,12,15,9,10,13$.
(2 marks)
$\tan \theta=a \quad \frac{\cos \theta \sin ^{2} \theta+\cos ^{3} \theta}{\sin \theta}=\frac{1}{a}$
(g) If , show that marks)

## QUESTION TWO (20 MARKS)

a) The masses, in grams, of 50 small fruits are as shown in the table blow.

| Mass (g) | $50-59$ | $60-69$ | $70-79$ | $80-89$ | $90-99$ | $100-109$ | $110-119$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of <br> fruits | 4 | 5 | 9 | 14 | 7 | 6 | 5 |

(I) State the modal frequency.
(II) Calculate the variance
(4 marks)
(III) Calculate the quartile deviation.
b) Bag A contains 2 red balls and 3 blue balls. Bag B contains 3 red balls and 2 blue balls. A bag is picked at random and two balls are drawn from it, one at a time, without replacement.
i. Represent the information on a tree diagram.
ii. Find the probability that the balls picked:

- Are of the same colour.
(2 marks)
- Are of different colour
c) The weights, to the nearest kilogram, of heifers in a farm are as shown below.

| Weight $(\mathrm{kg})$ | $170-179$ | $180-189$ | $190-199$ | $200-209$ | $210-219$ | $220-229$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of heifers | 3 | 8 | 13 | 9 | 7 | 5 |

Using the data, construct an ogive.

$$
(x+2) \quad P(x)=x^{4}-7 x^{2}-6 x
$$

(a) Determine whether is a factor of the polynomial is , if so, find the other factors by long division.

$$
2 \cos ^{2} \theta-\sin \theta-1=0 \quad 0^{\circ} \leq \theta^{0} \leq 360^{\circ}
$$

(b) Solve the equation , for
(c) A youth group in a church consists of 10 boys and 5 girls. In how many ways can a football team be formed if:
(i) There are no restrictions (2 marks)
(ii) The team must have three girls.

$$
2 x^{2}-5 x-6=0
$$

(d) Solve the equation by completing the square.
(e) Rationalize the denominator:

$$
\begin{equation*}
\frac{2 \sqrt{5}}{\sqrt{5}-3} \tag{2marks}
\end{equation*}
$$

## QUESTION FOUR (20 MARKS)

$$
\log _{2} 5+\log _{2} 8+\log _{2} 0.2
$$

(a) (I) Evaluate
(2 marks) $\log _{10}\left(\frac{x}{\sqrt{y}}\right)$
(II) If
(III) Find the relationship between and that does not involve logarithms if

$$
2 \log _{3} a+2 \log _{3} b=2 \text {. Find the value of } \quad b \text { if } a=2
$$

$$
27^{2 x+2}+9^{x+1}=2268
$$

(b) Solve for X in the equation

$$
\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}
$$

(c) Prove that
(d) If the roots of $\begin{gathered}2 x^{2}+3 x-4=0 \quad \alpha \\ \text { are } \quad \beta \\ \text { and }\end{gathered}$, without finding the exact values of $\alpha \quad \beta$ and , find the

$$
\alpha^{2}+\beta^{2}
$$

value of
(e) Find the radius of a circle that passes through the vertices of a triangle ABC with sides $\mathrm{AB}=3 \mathrm{~cm}$, $\mathrm{AC}=2.5 \mathrm{~cm}$ and angle $\mathrm{ABC}=49^{\circ}$

## QUESTION FIVE (20 MARKS)

(a) Express $3 \sin \theta+4 \cos \theta$ in the form $\quad$ giving the values of and hence solve

$$
\begin{gathered}
3 \sin \theta+4 \cos \theta-2=0 \quad 0^{0} \leq \theta^{0} \leq 360^{0} \\
\text { for } \\
\log _{b} a=\frac{1}{\log _{a} b}
\end{gathered}
$$

(b) Show that

$$
\log _{b} M=3 \quad \log _{b} P=4 \quad\left(\sqrt{M^{2}} P^{3}\right)
$$

(c) If and , evaluate

$$
\log _{b}\left(\frac{M^{\frac{1}{3}} P^{\frac{1}{4}}}{\sqrt{M^{2}} P^{3}}\right)
$$

(d) Find the quadratic function whose vertex is $3,-2$ )
(d) Find the quadratic function whose vertex is and y-intercept is

> (3 marks)
(e) The data below has a median of 5.5 , find X .

$$
7,6,10,4,3, \mathrm{X}
$$

