# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE 

(A Constituent College of JKUAT)

Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC/MECHANICAL/CIVIL ENGINEERING

SMA 2107/AMA 4102: GEOMETRY
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2HOURS

## Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

## SECTION A (Compulsory)

QUESTION ONE (30 MARKS)

$$
\frac{\sin 3 A \sin 6 A+\sin A \sin 2 A}{\sin 3 A \cos 6 A+\sin A \cos 2 A}=\tan 5 A
$$

a) Prove that

$$
\theta=5 / 13 \quad \sin \alpha=3 / 5 \quad \alpha
$$

b) Given that and such that is obtuse, work out the possible values of $\tan \alpha-\theta$
(4 marks)

$$
P Q R, Q R=3.5, R P=4 \quad P Q=5 .
$$

c) In triangle
and find the area of the triangle.

Calculate the size of the angle $P$ and hence (3 marks)
d) Find the equations of the two straight line which pass through the point (3, -2 ) and make

$$
\sqrt{3 x}+y=1
$$

angles of $60^{\circ}$ with the line

$$
x^{2}+y^{2}-8 x+2 y+7=0
$$

e) Verify that the point $(3,2)$ lies on the circle and find the equation of the tangent at this point.
f) Find the eccentricity, the coordinates of the foci and the equations of the asymptotes of the

$$
4 x^{2}-9 y^{2}=36
$$

hyperbola
g) Find the general solution of the equation $2 \sin 3 x \sin x=1$
h) Find the Cartesian equations of

$$
\begin{equation*}
r=a(1+2 \cos \theta) \tag{i}
\end{equation*}
$$

(ii) $r \cos (\theta-\alpha)=P$

## SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)
a) A triangle ABC has sides $\mathrm{a}, \mathrm{b}$, c and semi-perimeter S (so that $\mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}$ ). Show that its $\Delta=\sqrt{\{s(s-a)(s-b)(s-c)}$ real is

$$
\begin{equation*}
\cos 6 x+\cos 4 x+\cos 2 x=0 \tag{6marks}
\end{equation*}
$$

b) Solve the equation: for values of x from $0^{\circ}$ to $180^{\circ}$ inclusive marks)

$$
\alpha=\frac{1}{5}, \tan \beta=\frac{4}{19} \quad \gamma=\frac{2}{5} \quad \tan (\alpha+\beta+\gamma)=1
$$

c) If $\tan$
and , show that
d) The elevations of the top of a flagstaff from three distant points, A, B, C which are in a horizontal line with P are , and respectively. Prove that $\mathrm{AB}=3 \mathrm{BC}$ approximately. marks)

## QUESTION THREE (20 MARKS)

$$
\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1
$$

a) Show that the tangents to the ellipse at points whose eccentric angles differ

$$
\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=2
$$

by $90^{\circ}$ meet on the ellipse
(5 marks)
b) The line joining the points $(-1,7)$ and $(23,17)$ is taken as the diameter of a circle. Find the equation of this circle, the length of its radius and the coordinates of its centre. ( 5 marks)
c) Find:
$6, \frac{\pi}{3}$
(i) The rectangular coordinates of the point whose polar coordinates are and;
(ii) The polar coordinates of the point whose Cartesian coordinates are $(-5,12)$
marks)

$$
2 \sin ^{-1} x+\sin ^{-1}\left(x^{2}\right)=\frac{1}{2} \pi
$$

d) Find $x$ from the equation

## QUESTION FOUR (20 MARKS)

$$
\begin{equation*}
y^{2}=4 a(a-x) \quad r=\frac{2 a}{1+\cos \theta} \tag{8marks}
\end{equation*}
$$

a) Show that has a polar equation
b) Sketch the graph for $\quad \pi$ where
(3 marks)
$A(2,-2), B(3,4) \quad x+y=2$.
c) A circle passes through the point and its centre is on the line

Find its equation
d) Show that the point of intersection of two perpendicular tangents to a parabola lies on its directrix
(4 marks)

## QUESTION FIVE (20 MARKS)

$$
F(\cos \alpha+\mu \sin \alpha)=\mu W \underset{\text { where }}{ } \mu=\tan \lambda \quad, \text { prove that } \quad F=\frac{W \sin \lambda}{\cos (\alpha-\lambda)}
$$

a) If
(5 marks)

$$
\theta \sin 3 \theta+\sin 2 \theta \sin 6 \theta+\sin 3 \theta \sin 9 \theta=2 \sin 3 \theta \sin 7 \theta \cos 2 \theta
$$

b) Show that sin
c) A triangle has sides of lengths $m-n, m$ and $m+n$ where $m>n>0$. Use the cosine formula to

$$
\frac{1}{4} m<n<\frac{1}{2} m .
$$

show that if the triangle is obtuse angled, then
(5 marks)

$$
B=60^{\circ}, b=14 \mathrm{~cm}
$$

d) Solve the triangle in which and $\mathrm{c}=16 \mathrm{~cm}$. (4 marks)

