THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL/ELECTRICAL \& ELECTRONIC/BUILDING \& CIVIL ENGINEERING

SMA 2170/AMA 4101: ALGEBRA

END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (30 marks- COMPULSORY))
$\sqrt{2}=1.414 \quad \sqrt{3}=1.732 \quad \frac{3 \sqrt{2}-4}{\sqrt{3}-2 \sqrt{2}}$
a) Given that and
evaluate
(4 marks)
$x^{1.23}=0.12$
b) Solve for x in the equation (3 marks)
c) What are the values of a and b if $^{x-3}$ and $\begin{aligned} & x+7 \\ & \text { are factors of the quadratic function } \\ & \text { (5 marks) }\end{aligned}$

$$
\frac{6^{1 / 2} \times 96^{1 / 4}}{216^{1 / 4}}
$$

d) Evaluate
(4 marks)

$$
\frac{1}{t}+\frac{1}{t+1}=\frac{1}{2}
$$

e) Find the sum and the product of the roots of the equation

$$
x^{x}-4 x+29=0
$$

f) Solve the quadratic equation using the quadratic formula.
g) Obtain the expansion of $\left(1+x^{2}-2 x\right)^{8}$ as far as the term in x^{3}

Question Two (20 marks)

a) (i) State the remainder theorem.

(2 marks)

$$
p x^{4}+q x^{3}+3 x^{2}-2 x+3 \quad x+1
$$

$$
x^{2}-3 x+2
$$

(ii) The expression has the remainder when divided by

Find the values of p and q
(7 marks)
$2 x^{2}-x-6,3 x^{2}-8 x+4 \quad a x^{3}-10 x-4=0$
(iii) What is the value of a if and have a common factor?
(7 marks)
b) Without using either tables calculators, evaluate.

$$
\begin{equation*}
\frac{12^{3 / 2} \times 16^{1 / 8}}{27^{1 / 6} \times 18^{1 / 3}} \tag{4marks}
\end{equation*}
$$

Question Three (20 marks)

$$
1^{3}+2^{3}+\ldots \ldots . n^{3}=\frac{1}{4} n^{2}(n+1)
$$

a) Prove by induction
(7 marks)
b) In arithmetic progression, the sum of the first five terms is 30 , and the third term is equal to the sum of the first two. Write down the first five terms of progression.

$$
(1+x)^{1 / 3}
$$

c) Expand in ascending powers of x as far as the fourth term. By taking the first two terms of

$$
x=\frac{1}{1000}
$$

$$
\sqrt[3]{37}
$$

the expansion and substituting find the value of correct to six significance figures [h int $27 \times 37=999$]

Question Four (20 marks)

a) A given mass of air expands adiabatically and the following measurements are taken of the pressure (p cm of mercury) and volume (V)

\[

\]

i) Reduce into linear
ii) Determine the values of the constants k and n

$$
x \frac{2}{3}-5 x^{1 / 3}+6=0
$$

b) Solve the equation

$$
\frac{x^{2}\left(1+x^{2}\right)^{-1 / 2}-\left(1+x^{2}\right)^{1 / 2}}{x^{2}}
$$

c) Simplify
(4 marks)

Question Five (20 marks)

$$
\begin{equation*}
x^{2}-6 x+34=0 \tag{7marks}
\end{equation*}
$$

a) Show that the roots of the quadratic equation are complex. What is the smallest integer that can be added to the above equation to get real number roots?
$x^{2}-5 x-7=0 \quad \alpha \quad \beta$
b) If the roots of the equation are and , find the equation whose roots are $(\alpha+1, \beta+1)$

$$
\frac{3 i-2}{1+2 i}
$$

c) Express with real denominator

$$
\log _{10}^{x}+\log _{10}^{y}=1 \quad x+y=11
$$

d) Solve the equations and

