THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SC./ENG. IN ELECTRICAL \& ELECTRONICS/ MECHANICAL \& AUTOMOTIVE \& BUILDING \& CIVIL ENGINEERING

SMA 2171/AMA 4102: GEOMETRY
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)

$$
r \cos \left(\theta-\frac{\pi}{3}\right)=3
$$

a) Find the Cartesian equation of the curve in polar form given as

$$
4 \cos x-6 \sin x=5 \quad O^{\circ} \leq x \leq 360^{\circ}
$$

b) Solve the equation
for values in the range , correct to 0.1°

$$
x^{2}+y^{2}-4 x-2 y+1=0
$$

c) Describe the circle represented by
hence determine the equation of the

$$
(2+\sqrt{3}, 2)
$$

tangent and the normal lines at the point
(6 marks)
d) Two sides of an acute angled triangular piece of land are 48 m and 26 m respectively. If the area of the plot is $550 \mathrm{~m}^{2}$, find the length of the third side and the 3 angles of the triangular plot. (7 marks)

$$
16 x^{2}+25 y^{2}-160 x+50 y-1175=0
$$

e) Reduce the equation to the appropriate standard form and sketch the ellipse it represents.
f) Find the equation of a plane containing the points $(1,1,0),(0,1,2)$ and $(2,3,-8)$.
(5 marks)

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

a) In a triangular lawn the length of two sides and their included angle are $\mathrm{a}=12 \mathrm{~m}, \mathrm{~b}=10 \mathrm{~m}$ and $<c=30^{\circ}$
calculate the radius of the circumcirlce just touching the three corners.
(4 marks)

$$
a x+b y+c=0
$$

b) Find an equation in the form
for a line which passes through the point of intersection

$$
x-3 y=4 \quad 3 x+y=2 \quad 4 x-3 y-7=0
$$

of the lines and being also perpendicular to the line

$$
x^{2}-4 y^{2}+2 x+8 y-7=0
$$

(6 marks)
c) Discuss the equation the curves indicating some of these properties. stating all properties of the hyperbola hence sketch
(10 marks)

Question Three (20 marks)

$$
\vec{P}=2 \underset{\sim}{i}+3 \underset{\sim}{j}+4 \underset{\sim}{k} \quad \vec{Q}=4 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k} \quad \underset{\sim}{i}, \underset{\sim}{k}
$$

a) If and where are unit vectors, determine:

i)

$$
\begin{equation*}
\vec{P} \quad \vec{Q} \tag{3marks}
\end{equation*}
$$

ii) The angle between the vectors and

$$
\begin{equation*}
3 \cos 2 \theta+\sin \theta=1 \quad 0^{\circ} \leq \theta^{\circ} \leq 360^{\circ} \tag{4marks}
\end{equation*}
$$

b) Solve the equation for values of

$$
5 y=3 x-5 \quad 4 x^{2}-25 y^{2}=15
$$

c) Find the points in which the lines cut the hyperbola and the equations of the tangents to the hyperbola at these points.

Question Four (20 marks)

$$
r=\sin 2 \theta
$$

a) Plot accurately the graph of the polar equation and mark the lines of symmetry exist in this figure.
b) Solve the equation

$$
12 \cos ^{2} \theta+\sin ^{2} \theta=11 \quad \theta^{\circ} \leq \theta \leq 360^{\circ}
$$ marks)

$$
2 y=x+6 \quad y^{2}=8 x
$$

 on the domain

Question Five (20 marks)

$$
\frac{x-2}{3}=\frac{y-4}{5}=\frac{z-7}{2}
$$

$$
\vec{r}=\vec{a}+t \vec{u}
$$

a) Given an equation of a line in the form express it in the form hence determine whether the point $(8,14,11)$ lies on the line.

$$
\sin 3 A=3 \sin A-4 \sin ^{3} A
$$

b) Prove that

$$
y= \pm \frac{4}{3} x
$$

c) Find the equation for a hyperbola with asymptotes and a foci
d) Two planes leave an international airport at 11:00am. The first plane flies due west and a speed of $600 \mathrm{~km} / \mathrm{hr}$ and the second moves in a bearing $\mathrm{N} 30^{\circ} \mathrm{E}$ at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. Calculate how far apart the planes will be at $1: 00 \mathrm{pm}$ and the bearing of the $2^{\text {nd }}$ from the $1^{\text {st }}$ at that point in time.
(7 marks)

