

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL/MECHANICAL/ELECTRICAL & ELECTRONIC ENGINEERING

SMA 2171: APPLIED GEOMETRY

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

Question One (Compulsory)

a) A surveyor measures the angle of elevation of the top of a perpendicular building as 10°. He moves from 170m nearer the building and finds the angle of elevation is now 57°. Determine the height of the building.
 (4 marks)

© 2013 - Technical University of Mombasa

$\frac{\tan x + \sec x}{\sec x \left(1 + \frac{\tan x}{\sec x}\right)} = 1$	
b) Prove that	(4 marks)
6 $\cos^2 \theta$ + 5 $\cos \theta$ - 6 = 0 θ O° 360° c) Solve for values of from to .	(4 marks)
3,-5 $2x + y + 4 = 0$	
d) Find the distance from the point to the line (5,3)	(4 marks) (2,1)
e) Give the equation of the curve that is locus of all points equidistant from points	and (5 marks)
f) Determine the radius and the co-rodinates of the centre of the circle given $x^2 + y^2 + 8x - 2y + 8 = 0$	· · ·
. Sketch the circle.	(4 marks)
$\sin A = \frac{3}{5} \qquad \cos B = \frac{15}{17}$	$\sin(A+B)$
g) If and , where A is obtuse and B is acute, find the exact value	of o (5 marks)
Question Two	
a) Give the length of a, the length of the focal chord; and the equation of the parabola, $x = -3$	which is the locus
of all points equidistant from the point (3, 0) and the \therefore Sketch the parabola.	(5 marks)
b) Find the equation of a circle that pass through the points (1, 1), (2, 2) and (3, 3). Ex	plain your results. (10 marks)
c) Find C, B a and the area of the triangle ΔABC given A = 30°, b = 4cm and c = 5cm.	(5 marks)
Question Three	
$\sin(x+2) = \cos(x-\beta) \qquad \qquad \tan x = \frac{\cos\beta - \sin\alpha}{\cos\alpha - \sin\beta}$	
a) If $3x^2 + y^2 + 10x + 32 = 0$ $\cos \alpha - \sin \beta$	(5 marks)
b) Reduce the equation b to an eclipse in standard form.	(7 marks)
c) Find the Foci, directrices , eccentrics, latis rectum and equation of the assumptotes $\frac{(x-0)^2}{3^2} - \frac{(y-0)^2}{4^2} = 1$	s of the hyperbola
described by the equation. Question Four	(8 marks)

© 2013 – Technical University of Mombasa

a)	$r = \sec \theta \tan \theta$ Change the equation to	an equation in rectangular coordinates.	(5 marks)	
b)	r = 2 Sketch the graph of the equation	$2+2\cos\theta$	(5 marks)	
3x - y - 2 = 0				
c)	Find to equation of a line parallel to	and passing through the point (5, 2	2) (5 marks)	
d)	Find the equation of the tangent line	, the equation of the normal line, and the lengt	````	
,	$y^2 = \frac{4}{3}x$	1	U U	
	and the normal of: at (3, 2)		(5 marks)	
Qu	lestion Five			
a)	parametric equation. $x = 3 - 4\sin\theta$ (i)	prizontal and vertical tangents to the curve re	presented by the	
	$y = 4 + 3\cos\theta$ (ii)		(6 marks)	
		$\theta = O^{\circ}$	(v marks)	
		from to 260° in increment of 20° given the	at	

Plot the graph of the curve by taxing to 360° in increment of 30° , given that from

$$\frac{\Delta x}{\Delta \theta} = -4\cos\theta \qquad \frac{\Delta y}{\Delta \theta} = -3\sin\theta$$

and

P(1,1) **\theta**(3,1)

b) Find the equation of every circle that passes through to point and its tangent to the and y = -3xline

(10 marks)

(10 marks)