

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN BUILDING & CIVIL ENGINERING

SMA 2171: GEOMETRY

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

 $2\cos x + \sin 2x = 0$

a) (i) Find all solution of

 $\begin{array}{cc} \sin 3x & \sin x \\ \text{(ii) Express} & \text{in terms of} \end{array}$

b) (i) Find the acute angle between two lines that have $m_1 = 3$ and $m_2 = 7$ for their slopes.

(3 marks)

(3 marks)

3x - y + 6 = 0

(ii) Find the distance from the point (5, 2) to the line

(3 marks)

(4 marks)

- - (ii)
 - **b**) Find the Foci, directrices, eccentricity, length of the focal chord and the equation of the asymptotes of

Question Four

c) (i) Find the equation of the curve that is lows of all points equidistant from the line x = -4 and point (3, 4)(5 marks)

to standard form

e) Determine the end points of the major and minor axes and the foci of the ellipse with equation

 $25x^2 + 9y^2 = 225$

(ii) Reduce the equation:

 $\frac{\sec\theta}{1+\cos\theta} = \csc^2(\sec\theta - 1)$

SECTION B (Answer any TWO questions from this section)

Question Two

d) Prove

a) Change the following equation to an equation in rectangular co-ordinates:

 $y^2 - 6y - 8x + 1 = 0$

$$\phi = \frac{3}{\sin \theta - 3\cos \theta}$$
 (3 marks)

$$2\sec^2\theta = 3(2\tan\theta)$$
(8 marks)

c) ABC is a triangle such that
$$AB = 12$$
 cm, $BC = 21$ cm and $B = 101^{\circ}$. (9 marks)

Question Three

b) Solve the equation

y = 1 + cos *x*
$$0 \le x \le 2\pi$$
 (6 marks) (i) Sketch the graph of for

Find the Amplitude; period and phase shift of

the hyperbola described by the equation:

$$\frac{x^2}{9} - \frac{y^2}{16=1}$$

$$\angle$$
 $PC = 21 \,\mathrm{cm}$ and $P = 101^{\circ}$ (0 m

 $y = 3\cos(2x - \pi)$

(2 marks)

(3 marks)

(6 marks)

(3 marks)

(11 marks)

a) Determine the vertex, the axis of symmetry, the focus and the directrix of the parabola with equation: $(y-3)^2 = 8(x-2)$

	. Then graph it.	(7 marks)
b)	Prove the identity: $\cot^2 \theta = 1 - \sin \theta$	
	$\frac{1}{1+\csc\theta} = \frac{1}{\sin\theta}$	(4 marks)
c)	$r = 2 + 2\cos\theta \qquad 0 \le \theta \le 2\pi$ Graph for	(9 marks)

Question Five

- **a)** Find the equation of the circle that passes through the points (1, 1), (2,2) and (3, 3). (8 marks)
- **b)** Find an equation of the tangent line and normal line to the hyperbola with equation:

$$\frac{x^2}{9} - \frac{y^2}{16} = 1 \qquad p(15/4,3)$$
at

(7 marks)

c) In Washington DC there is a park called Ellipse located between white house and Washington monument. The park is surrounded by a path that forms axis 1502 ft and minor axis having a length of 1280ft. Suppose the part manager wants to install water fountains at fixed points. Find the distance between the fountains rounded to the nearest feet. (5 marks)