

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINERING

SMA 2171: GEOMETRY

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

$$
2 \cos x+\sin 2 x=0
$$

a) (i) Find all solution of
b) (i) Find the acute angle between two lines that have $\mathrm{m}_{1}=3$ and $\mathrm{m}_{2}=7$ for their slopes.

$$
3 x-y+6=0
$$

(ii) Find the distance from the point $(5,2)$ to the line
c) (i) Find the equation of the curve that is lows of all points equidistant from the line $x=-4$ and point $(3,4)$

$$
y^{2}-6 y-8 x+1=0
$$

(ii) Reduce the equation:
to standard form
(2 marks)

$$
\frac{\sec \theta}{1+\cos \theta}=\csc ^{2}(\sec \theta-1)
$$

d) Prove
e) Determine the end points of the major and minor axes and the foci of the ellipse with equation $25 x^{2}+9 y^{2}=225$
(6 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Change the following equation to an equation in rectangular co-ordinates:

$$
\begin{equation*}
\phi=\frac{3}{\sin \theta-3 \cos \theta} \tag{3marks}
\end{equation*}
$$

$$
2 \sec ^{2} \theta=3(2 \tan \theta)
$$

b) Solve the equation
c) ABC is a triangle such that $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=21 \mathrm{~cm}$ and $\angle \mathrm{B}=101^{\circ}$.

Question Three

$$
y=1+\cos x \quad 0 \leq x \leq 2 \pi
$$

a) (i) Sketch the graph of for
(6 marks)

$$
y=3 \cos (2 x-\pi)
$$

(ii) Find the Amplitude; period and phase shift of
b) Find the Foci, directrices, eccentricity, length of the focal chord and the equation of the asymptotes of the hyperbola described by the equation:

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16=1}
$$

(11 marks)

Question Four

a) Determine the vertex, the axis of symmetry, the focus and the directrix of the parabola with equation: $(y-3)^{2}=8(x-2)$. Then graph it.
b) Prove the identity:

$$
\begin{equation*}
\frac{\cot ^{2} \theta}{1+\csc \theta}=\frac{1-\sin \theta}{\sin \theta} \tag{4marks}
\end{equation*}
$$

$$
r=2+2 \cos \theta \quad 0 \leq \theta \leq 2 \pi
$$

c) Graph for
(9 marks)

Question Five

a) Find the equation of the circle that passes through the points $(1,1),(2,2)$ and $(3,3)$. ($\mathbf{8}$ marks)
b) Find an equation of the tangent line and normal line to the hyperbola with equation:

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \quad P(15 / 4,3)
$$

c) In Washington DC there is a park called Ellipse located between white house and Washington monument. The park is surrounded by a path that forms axis 1502 ft and minor axis having a length of 1280 ft . Suppose the part manager wants to install water fountains at fixed points. Find the distance between the fountains rounded to the nearest feet.
(5 marks)

