

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL, MECHANICAL, ELECTRICAL & ELECTRONIC ENG, BACHELOR OF ENG IN ELECTRICAL & ELECTRONIC ENG, BUILDING & CONSTRUCTION

SMA 2171: GEOMETRY

AMA 4102: GEOMETRY

END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

and *B* being acute, find the value of

Instructions to Candidates:

You should have the following for this examination

• Answer Booklet This paper consists of **FIVE** questions Answer question **ONE (COMPUSLSORY)** and any **TWO** questions Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1 (30 Marks)

$$\tan\theta + \cot\theta = \sec\theta\csc\theta$$

a) Prove that

(4 marks)

$$\cos A = \frac{2}{5}, \tan B = \frac{5}{12}$$

b) If

 $\sin(A+B)$

(4 marks)

 L_1 and L_2 $P_1(0,5)$ $P_2(-1,3)$ L_{2} L_1 such that passes through c) Given the lines, and and passes $P_{3}(3,1)$ $P_{2}(-1,3)$ L_1 and L_2 , show that the lines are perpendicular (3 marks) through and

$$4x + 2y + 7 = 0$$

- d) Find the distance from the point (2,1) to the line
- e) Find the equation of the curve that is the locus of all point equidistant from the line and the point (3,0) (5 marks)
- f) Find the centre of the circle and the radius of the circle given by the equation $x^{2} + y^{2} + \frac{1}{2}x - 3y - \frac{27}{2} = 0$

$$+y^{2} + \frac{-3y}{2} - \frac{-3y}{16} = 0$$
 (5 marks)

g) Give the length of a, the length of the focal chord and the equation of the parabola which is the x = -3 locus of all points equidistant from the point (3, 0) and the line (5 marks)

SECTION B (Answer any TWO questions)

Question 2 (20 Marks)

a) Find the foci, directices, eccentricity, length of focal chord and equation of the asymptotes of the

$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

hyperbola described by the equation

- b) Express the equation of the following circle with its centre (*a*, 0) and with radius *a* in polar coordinates (5 marks)
- c) Change the following equation to an equation in rectangular coordinates (5 marks)

$$r = \frac{3}{\sin \theta - 3\cos \theta}$$
(5 marks)

Question 3 (20 Marks)

$$16x^2 + 9y^2 + 64x - 18y - 71 = 0$$

a) Discuss and sketch the graph of the equation

$$y = x^2 + 4x$$

b) Discuss and sketch the parabola

(7 marks)

(8 marks)

(10 marks)

(4 marks)

c) Find the points of contact of the horizontal and vertical tangents to the curve represented by the $x = 3-4\sin\theta$ $y = 4+3\cos\theta$	
parametric equation and	(5 marks)
Question 4 (20 Marks)	
$r = 2 + 4\cos\theta$	
a) Sketch the graph	(10 marks)
b) Find the equation of the tangent at the point (3,1) on the circle $x^2 + y^2 - 4x + 10y - 8 = 0$	
	(5 marks)

$$\Delta PQR, r = 5.75cm, P = 42^{\circ}, Q = 65^{\circ}$$
c) In the triangle . Calculate length PR (5 marks)

Question 5 (20 Marks)

a) Determine whether the lines 5y=12x-33 3x+4y=9 $x^2 + y^2 + 2x - 8y = 8$.

b) In triangle
$$\Delta XYZ$$
, $XY = 3.5cm$, $YZ = 4.5cm$ $ZX = 6.5cm$
and . Calculate the size of angle Y (5 marks) $\sin(x + \alpha) = \cos(x - \beta)$ α β
c) Given that . Find *Tan x* in terms of and (7 marks)

$$\sin 3\theta - 3\sin 3\theta - 4\sin^3 \theta$$
d) Show that (3 marks)