THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL, MECHANICAL, ELECTRICAL \& ELECTRONIC ENG, BACHELOR OF ENG IN ELECTRICAL \& ELECTRONIC ENG, BUILDING \& CONSTRUCTION

SMA 2171: GEOMETRY
AMA 4102: GEOMETRY
END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPUSLSORY) and any TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question 1 (30 Marks)

$$
\tan \theta+\cot \theta=\sec \theta \csc \theta
$$

a) Prove that

$$
\cos A=\frac{2}{5}, \tan B=\frac{5}{12} \quad \sin (A+B)
$$

b) If
and B being acute, find the value of
$\begin{array}{ll}L_{1} \text { and } L_{2} & L_{1}\end{array} P_{1}(0,5) \quad P_{2}(-1,3) \quad L_{2}$
c) Given the lines, such that passes through and and passes $P_{2}(-1,3) \quad P_{3}(3,1) \quad L_{1}$ and L_{2} through and , show that the lines are perpendicular (3 marks)

$$
4 x+2 y+7=0
$$

d) Find the distance from the point $(2,1)$ to the line
e) Find the equation of the curve that is the locus of all point equidistant from the line ${ }^{x=-3}$ and the point $(3,0)$
f) Find the centre of the circle and the radius of the circle given by the equation

$$
\begin{equation*}
x^{2}+y^{2}+\frac{1}{2} x-3 y-\frac{27}{16}=0 \tag{5marks}
\end{equation*}
$$

g) Give the length of a, the length of the focal chord and the equation of the parabola which is the

$$
x=-3
$$

locus of all points equidistant from the point $(3,0)$ and the line
(5 marks)

SECTION B (Answer any TWO questions)

Question 2 (20 Marks)

a) Find the foci, directices, eccentricity, length of focal chord and equation of the asymptotes of the

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

hyperbola described by the equation
b) Express the equation of the following circle with its centre ($a, 0$) and with radius a in polar coordinates
c) Change the following equation to an equation in rectangular coordinates

$$
\begin{equation*}
r=\frac{3}{\sin \theta-3 \cos \theta} \tag{5marks}
\end{equation*}
$$

Question 3 (20 Marks)

$$
16 x^{2}+9 y^{2}+64 x-18 y-71=0
$$

a) Discuss and sketch the graph of the equation
(7 marks)

$$
y=x^{2}+4 x
$$

b) Discuss and sketch the parabola
c) Find the points of contact of the horizontal and vertical tangents to the curve represented by the

$$
x=3-4 \sin \theta \quad y=4+3 \cos \theta
$$

parametric equation and

Question 4 (20 Marks)

$$
r=2+4 \cos \theta
$$

a) Sketch the graph
b) Find the equation of the tangent at the point $(3,1)$ on the circle

$$
x^{2}+y^{2}-4 x+10 y-8=0
$$

$$
\Delta P Q R, r=5.75 \mathrm{~cm}, \quad P=42^{\circ}, Q=65^{\circ}
$$

c) In the triangle
. Calculate length PR

Question 5 (20 Marks)

$$
5 y=12 x-33 \quad 3 x+4 y=9
$$

a) Determine whether the lines and are tangents to the circle $x^{2}+y^{2}+2 x-8 y=8$

$$
\Delta X Y Z, X Y=3.5 \mathrm{~cm}, Y Z=4.5 \mathrm{~cm} \quad Z X=6.5 \mathrm{~cm}
$$

b) In triangle and \quad. Calculate the size of angle Y

$$
\begin{equation*}
\sin (x+\alpha)=\cos (x-\beta) \quad \alpha \quad \beta \tag{5marks}
\end{equation*}
$$

c) Given that

$$
\sin 3 \theta-3 \sin 3 \theta-4 \sin ^{3} \theta
$$

d) Show that

