THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SC./ENG. IN ELECTRICAL \& ELECTRONICS/ MECHANICAL \& AUTOMOTIVE \& BUILDING \& CIVIL ENGINEERING

SMA 2172/AMA 4102: CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet
This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)
a) Define the following terms as used in Algebra:
i) A function
(2 marks)
ii) Local points
(2 marks)

$$
y=\frac{1}{36-x^{2}}
$$

b) Calculate the domain and range of function

$$
f(x)=3 x^{2}, g(x)=\frac{1}{\sqrt{1+x}} \quad h(x)=\frac{1+x}{x} \quad L=h g f
$$

c) Given that

$$
\frac{x^{3}-125}{x-5} \quad x \rightarrow 5
$$

d) Find the limit of the function as
(4 marks)

$$
f(t)=k t^{4}
$$

e) Find from the first principles, the derivative of the function

$$
x=80 t \quad y=64 t-16 t^{2}, \quad \frac{d y}{d x}=0
$$

f) Given that and find the value of t for which
(4 marks)
g) Show that the derivative of the function. is $\sec ^{2} 3 x-6 x \sin 3 x \cos 3 x-\cot x+\tan x$
(4 marks)

$$
g(x)=5+\frac{x}{2} \quad g^{-1}(x)
$$

h) Given that the function find the value of
(3 marks)

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$
\frac{d y}{d x} \quad x^{5}+4 x y^{3}-3 y^{5}=2
$$

a) Find if

$$
\begin{equation*}
\frac{d y}{d x} \quad y^{2 / 3}=\frac{\left(x^{2}+1\right)(3 x+4)^{1 / 2}}{\sqrt{(2 x-3)\left(x^{2}-4\right)}} \tag{4marks}
\end{equation*}
$$

b) By using logarithmic differentiation find if

$$
y=3 \ln \sin x
$$

c) Calculate the derivative of
d) One side of a rectangle is three times the other. If the perimeter is increased by 2% what is the percentage change in the area?

Question Three (20 marks)

a) 1000 m of fencing wire is to be used to make a rectangular enclosure. Find the greatest possible area and the corresponding dimensions.
(3 marks)

$$
y=2 x^{3}+3 x^{2}-12 x+7
$$

b) Find the turning points of the graph
i) Distinguish between maximum and minimum values of the points obtained above (4 marks)
ii) Show that the graph passes through $(1,0)$ and find the other point on the x axis. ($\mathbf{2}$ marks)
iii) Sketch the above curve.

Question Four (20 marks)

a) Find the equations of the normal to the parabola $4 y=x^{2}$ at the points ${ }_{(-2,1)}^{(-4,4)}$ and (5 marks)

$$
y=(x-2)(x-3)(x-4)
$$

b) The curve cuts the x-axis at the point $P(2,0) Q(3,0)$ and $R(4,0)$. Prove that the tangents at P and R are parallel.
$q \quad y$
c) At what point does the normal to the curve at cut the axis?

Question Five (20 marks)

a) The side of a cube is increasing at the rate of $6 \mathrm{~cm} / \mathrm{s}$. Find the rate of increase of the volume when the length of a side is 9 cm .
b) By applying the concepts of small changes as used in calculus, find the approximate value of
c) A particle move along a straight line so that aft ts, its distance from O a fixed point on the line is 5 m $s=t^{3}-3 t^{2}+2 t$
where . Calculate.
i) The time when the particle is at O
(4 marks)
ii) The velocity and acceleration at the times calculated in part (i) above.
iii) What is its average velocity during the first second?

