THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL/ELECTRICAL \& ELECTRONICS/MECHNICAL/BUILDING \& CONSTRUCTION \& BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONICS

SMA 2172: CALCULUS I

AMA 4103: CALCULUS I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012
TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (Compulsory)

QUESTION ONE (30 MARKS)

a) Define the following terms;-
(i) A function
(2 marks)
(ii) A limit of a function

$$
f(x)=x^{2}+x-1 \quad h(x)=x^{2}-x
$$

b) If
and
Find:

$$
f \circ h(x)
$$

(i)
c) Find for the following functions:-

$$
y=\sin ^{3} 2 x
$$

(i)

$$
x=2 t+3, y=t^{2}-1 \text { at } t=6
$$

(ii)

$$
\lim _{x \rightarrow \infty} \frac{(2 x-3)(3 x+5)(4 x-6)}{3 x^{3}+x-1}
$$

d) Examine the limit of
 marks)

$$
f(x)=2 x+3
$$

f) Find the derivative of by the first principle

$$
\lim _{x \rightarrow 3}(2 x+1=7)
$$

g) Prove that the limit
h) Evaluate the following integral

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)

$$
x=x_{o}
$$

a) Define the continuity of a function at a point

$$
x^{2}+x y+y=7
$$

b) Find the tangent to the curve

$$
\text { at the point }(1,2)
$$

c) Newton's law of universal gravitation states that the force between any particles leaving $M_{1} \mathrm{~kg}$ and ${ }^{M_{2}} \mathrm{~kg}$, separated by a distance $\mathrm{r}(\mathrm{m})$ is an attraction acting along the line joining having the same value for all pairs of particles. Two asteroids are approaching each other. The first has a mass of 1000 kg and the second a mass 3000 kg .
(i) What is the gravitational force between the asteroids when they are 10 km apart?
(ii) How is their force changing at that distance? Explain

$$
\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+1}\right)^{x}
$$

d) Evaluate

$$
f(x)=\frac{x}{x^{2}-4 x+3}
$$

e) Find the vertical asymptotes of
(4 marks)

QUESTION THREE (20 MARKS)

$$
y=x-2
$$

$$
x=y^{2}
$$

a) Find the area bounded on the right by the line , on the left by the parabola and below by the x-axis
(6 marks)
b) A bacteria population is growing at a rate equal to 10% of its population each day. Its initial size is 10,000 organisms. How many bacteria are present after 10days and after 30 days.
$f^{\prime}(x) \quad f(x)=\left(x^{3}+x^{2}+1\right)\left(x^{19}+16\right)$
c) Find of the following
(3 marks)

$$
h(x)=x^{2} \sin x
$$

d) (i) Find the derivative of

$$
g(x)=\frac{x-2}{2 x-5}, \quad g^{-1}(x)
$$

(ii) Given find

QUESTION FOUR (20 MARKS)

a) Find:

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\frac{1-\cos 2 x}{x \sin x}\right) \tag{i}
\end{equation*}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x}
$$

(ii)

$$
y=\left(x^{2}+1\right)^{3}\left(x^{3}-1\right)^{2} \quad y=\frac{4 x^{3}+6}{x-1}
$$

b) (i) Find the derivatives of and

$$
y=t^{2}-1 \quad x=2 t+3
$$

(ii) If and

$$
\frac{d y}{d x}
$$

Find
c) A square sheet tin, which has the measurement of one centimeter on each side, is used to make an open top box by cutting a small square of tin from each corner and bending up the sides. How large a square should be cut from each corner for the box to have as large a volume as possible

QUESTION FIVE (20 MARKS)

a) Evaluate :

$$
\int x e^{x} d x
$$

(i)

$$
\iint_{0}^{\frac{\pi}{2}} x \cos x d x
$$

(ii)
b) A hard-boiled egg at $98^{\circ} \mathrm{C}$ is put in a sink of $18^{\circ} \mathrm{C}$ water to cool. After 5 minutes, the egg's temperature is found to be $38^{\circ} \mathrm{c}$. Assuming that the water has not warmed appreciably, how much longer will it take for the egg to reach $20^{\circ} \mathrm{C}$?
(8 marks)
c) Investigate continuity of $f(x)^{\text {at }} \mathrm{x}=1$ and $\mathrm{x}=1$ where;

$$
f(x)=\left\{\begin{array}{l}
2-x, x<-1 \\
x,-1 \leq x<1 \\
4, x=1 \\
4-x, x>1
\end{array}\right.
$$

(6 marks)

