THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY IN INDUSTRIAL MICROBIOLOGY \& BIOTECHNOLOGY
 YR I, SEM II

SMA 2250: MATHEMATICS FOR BIOLOGISTS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages
Question 1 (Compulsory - 30 Marks)

$$
\frac{d y}{d x}
$$

a) Find from first principles for the following functions

$$
y=7 x^{4}
$$

(i)

$$
y=x \cos x
$$

(ii)
b) Evaluate.

$$
\int_{-1}^{1}(2 x-1)^{2} d x
$$

(i)

$$
\int_{0}^{\frac{\pi}{2}} \cos 3 x d x
$$

(ii)
c) A biologist is interested in determining the mean daily distance covered by each toad in its search for food. Of a sample of 100 toads observed the mean was 450 m with a standard deviation 20 m . Find the number of toads likely to cover a distance of:
(i) Less than 445 m (4 marks)
(ii) Between 430 and 460 m (6 marks)

Assume that the distance are normally distributed

Question 2 (20 Marks

$$
y=x 3-4 x^{2}+2
$$

a) (i) Calculate the maximum and minimum values of the function and distinguish between them
(ii) Sketch the graph of the function in (a)(i) between $x=-2$ and $x=+4$ and show the maximum and minimum points clearly on the sketch
b) When viewed through a microscope a bacterium is seen to move in accordance with the equation $S=\left(4 t+6 t^{2}\right) \times 10^{-6}$

Find:
(i) The distance travelled between 0 and 45 seconds
(2 marks)
(ii) The velocity after 30 seconds
(3 marks)
(iii) The acceleration after 30 seconds

Question 3 (20 Marks)

a) An examination paper consists of 10 questions. The answer to each questions must be selected from four alternatives. If a student guesses the answer to each question, find the probability that he will gain.
(i) No correct question
(ii) All correct questions
(iii) At least 3 correct questions
b) An unbiased die is thrown 600 times. Determine:
(i) The likely number of times of obtaining a six
(2 marks)
(ii) The probability that the number of times of obtaining a six lies between 105 and 110 times
(9 marks)

Question 4 (20 Marks)

a) The acidity of a number of soil samples from a marshy area was determined and the results grouped under class intervals of 0.1 pH as shown in table 1.

pH	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8
f	2	6	9	15	21	18	12	4	3

Using a suitable assumed mean
(i) Determine the mean pH of the area
(ii) Calculate the standard deviation from the mean of the data
b) Test at 5% level the hypothesis that the pH of the area in (a) is greater than 6.4

Question 5 (20 Marks)

a) Differentiate the following functions w.r.t.x

$$
y=4 \sec 2\left(3 x^{2}+1\right)
$$

(i)

$$
x \sin y=y \cos x
$$

(ii)
b) Determine the following integrals

$$
\int_{1}^{4} \sqrt{x}\left(x^{2}-1\right) d x
$$

(i)

$$
\int \frac{1}{6 x^{2}} d x
$$

(ii)

$$
\int \frac{2 x}{\left(6 x^{2}-3\right)} d x
$$

(iii)

