TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENG./MECHANICAL ENG/ELECTRICAL \& ELECTRONIC ENG.

SMA 2270: CALCULUS III

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: JULY 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)

$$
w=f(x, y) \quad x=r \cos \theta \quad y=r \sin \theta
$$

a) Given that where and . Show that

$$
(\partial w / \partial r)^{2}+1 / r^{2}(\partial w / \partial \theta)^{2}=f_{x}^{2}+f_{y}^{2}
$$

(6 marks)

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{1+4 n^{2}}}
$$

b) Determine the convergence of the series using the limit comparison test. (4 marks)
c) Evaluate each of the following limits:

$$
\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+12}-12}{x-2}
$$

i)

$$
\lim _{x \rightarrow \pi}\left(\frac{\tan ^{2} x}{1-\sec x}\right)
$$

ii)
d) Evaluate the improper integral

$$
\int_{1}^{2} \int_{2}^{3} e^{x+y} d y d x
$$

e) Evaluate

$$
\operatorname{In}\left(1+e^{x}\right)
$$

f) Expand in ascending powers of x up to the term containing x^{4}.

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$
f(x)=(x-1)(x-2)(x-3)
$$

a) Verify the mean value theorem for the function in $[0,4]$

$$
\lim _{x \rightarrow 0} x \operatorname{In} \tan x
$$

b) Evaluate

$$
f(x)=|x|
$$

c) Investigate whether \quad is differentiable at $x=0$.

$$
a_{n}=\sqrt{n^{2}+4 n}-n
$$

d) Determine the convergence or divergence of the sequence

Question Three (20 marks)

$f(x)=e^{x} \sin x \quad[0, \pi]$
a) Verify Rolle's theorem of in
(5 marks)

$$
\sum_{n=1}^{\infty} 1 / n
$$

b) Use integral test to determine the convergence or divergence of

$$
\theta=-\pi / 4 \quad \theta=\pi / 4
$$

c) Find the area of the region bounded by the rays and and the graph of the equation

$$
=1+\sin \theta
$$

(6 marks)
d) Investigate the continuity of the function below at $\mathrm{x}=4$.

$$
f(x)= \begin{cases}\frac{1}{x-3} & x \geq 4 \\ 5-x & x<4\end{cases}
$$

Question Four (20 marks)

Inx
a) Expand about $\mathrm{x}=1$ up to the fourth degree term and hence obtain
(6 marks)

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

b) Find

$$
-2 / 1,8 / 2,-26 / 6,80 / 24,-242 / 120, \ldots
$$

c) Find the nth term of the sequence and determine whether the sequence converges or diverges.

Question Five (20 marks)

$$
\begin{equation*}
\iint_{R} x y(x+y) d x d y \quad y=x^{2} \quad y=x \tag{6marks}
\end{equation*}
$$

a) Evaluate
over the region between and

$$
z=f(x, y)=x^{2}+2 x y+4 y^{2} \quad y=e^{a x}
$$

b) Find the total derivative given that

$$
\begin{equation*}
f(x, y)=\frac{2 y}{y+\cos x} \quad f_{x} \quad f_{y} \tag{4marks}
\end{equation*}
$$

c) Given that , find and .
d) Find the interval of convergence of the series.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(x+3)^{n}}{(n+1) 4^{n}} \tag{6marks}
\end{equation*}
$$

