

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONICS ENGINEERING/MECHANICAL **ENGINEERING/BUILDING & CIVIL ENGINEERING**

SMA 2271: ORDINARY DIFFERENTIAL EQUATIONS

SPECIAL/SUPPLIMENTARY EXAMINATION **SERIES:** FEBRUARY/MARCH 2012 **TIME:** 2HOURS

Instructions to Candidates:

You should have the following for this examination - Answer booklet This paper consists of **FIVE** questions Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

SECTION A (Compulsory)

QUESTION ONE (30 MARKS)

a)	State the necessary	conditions f	for a di	ifferential	equation t	o be	conside	red linear	((2marks)
					13		12	,		

$$3\frac{d^{3}y}{dx^{3}} + 3y\frac{d^{2}y}{dx^{2}} + 4\frac{dy}{dx} + y = e^{2x}$$

Hence with reasons state whether the equation

(2 mark)

b) Differentiate between general and particular solution of a differential equation. Hence show f(x)

С

$$=(x^{3}+c)e^{-3x}$$

that the function where is an arbitrary constant is a solution of the du

$$\frac{dy}{dx} + 3y = 3x^2 e^{-3x}$$

differential equation

© 2012 The Mombasa Polytechnic University College

(4 marks)

is linear

E = 2CB = 2Dthe equation is exact if and

 $u = v^{1-n}$

c) Given the differential equation

d) Prove that the transformation

и

х. equation in and Hence solve the equation

e) Given the differential equation following statements in relation to a power series solution.

equation marks)

(ii) Regular singular point of the equation

 $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = 0$

(i) Ordinary point of the equation

f) Obtain a general solution of the equation

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)

By separation of variables solve a)

b) Solve the linear fractional equation

marks)

(iii)

Find the power series solution of the differential equation using the method of frobenius

c)

$$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x-5)y = 0$$

QUESTION THREE (20 MARKS)

$$(3x^2 + 4xy)dx + (2x^2 + 2y)dy = 0$$

a) Solve

explain each of the

(1 mark)

(1 mark)

(6

(4 marks)

(4 marks)

(6

(7 marks)

$$Ax^{2} + Bxy + Cy^{2} dx + (Dx^{2} + Exy + Fy^{2}) dy = 0$$

$\frac{dy}{dx} + P(x)y = Q(x)y^n$ reduces the equation $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$

 $a_o(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$

v(1) = 0, y'(1) = 4

 $\left(x^2 + 2y^2\right)dx - 2xydy = 0$

to a linear

(7 marks)

(3 marks)

, show that

Hence using Taylor's series expansion, find a power series solution of the

to obtain the general solution.

Page 2

(10 marks)

 $\frac{dy}{dx} = \frac{x+y-3}{x-y-1}$

 $y \tan x \frac{dy}{dx} = (4 + y^2) \sec^2 x$

b) An object moves with simple harmonic motion on the x axis. Initially it is located at a distance 46 m away from the origin when t=0 and has velocity v=15 m/s and decelerating at $100m/s^2$

directed towards the origin O. find the equation of the position at any time t. (6 marks) c) Find the particular solution for the initial value problem $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 0$ if , . (7marks)

QUESTION FOUR (20 MARKS)

a) Solve $\frac{dy}{dx} + y \cot x = \cos x$ to obtain the particular solution given that at $x = \frac{\pi}{2}$ $y = \frac{5}{2}$ marks)

$$(x^2 - xy + y^2)dx - xydy = 0$$

- b) Obtain a general solution of the equation
- c) An electric circuit consists of an inductance of 0.1 Henry a resistance of 20 ohms and a i condenser of capacitance 25 microfarads. Find the charge q and the current i at any time t, da

$$i = \frac{dq}{dt} = 0$$

given that the initial conditions are q = 0.05 coulombs and when t = 0 if

 $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E(t)$

marks)

QUESTION FIVE (20 MARKS)

 $(y^{3} + 2x)dx + (3xy^{2} + 1)dy = 0$ a) Show that is exact and then find its general solution.

(5 marks)

b) The initial temperature of a body is and after 5 minutes its temperature is , from Newton's law of cooling it is known that the rate of cooling of a body is proportional to the temperature difference between the body and its surrounding room temperature. Use this to predict the temperature of the body after a further 5 minutes given that the room temperature was constant at 21°C. (7 marks)

$$\frac{dx}{dt} + 2x = 4e^{3t} \qquad t = 0, \ x = 1$$

c) Using laplace transform solve given that at . (8 marks)

THE END

(7 marks)

(8