THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONICS ENGINEERING/MECHANICAL ENGINEERING/BUILDING \& CIVIL ENGINEERING

SMA 2271: ORDINARY DIFFERENTIAL EQUATIONS

SPECIAL/SUPPLIMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (Compulsory)

QUESTION ONE (30 MARKS)

a) State the necessary conditions for a differential equation to be considered linear (2marks)

$$
3 \frac{d^{3} y}{d x^{3}}+3 y \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=e^{2 x}
$$

Hence with reasons state whether the equation
is linear
(2 mark)
b) Differentiate between general and particular solution of a differential equation. Hence show

$$
f(x)=\left(x^{3}+c\right) e^{-3 x} \quad c
$$

that the function
where is an arbitrary constant is a solution of the

$$
\frac{d y}{d x}+3 y=3 x^{2} e^{-3 x}
$$

differential equation

$$
\left(A x^{2}+B x y+C y^{2}\right) d x+\left(D x^{2}+E x y+F y^{2}\right) d y=0
$$

c) Given the differential equation
, show that

$$
B=2 D \quad E=2 C
$$

the equation is exact if and
(3 marks)

$$
u=y^{1-n} \quad \frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

d) Prove that the transformation reduces the equation to a linear

$$
\begin{equation*}
\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}} \tag{7marks}
\end{equation*}
$$

equation in and Hence solve the equation

$$
a_{o}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=0
$$

e) Given the differential equation following statements in relation to a power series solution.
explain each of the
(i) Ordinary point of the equation
(ii) Regular singular point of the equation
(1 mark)
(iii) Hence using Taylor's series expansion, find a power series solution of the

$$
x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=0 \quad y(1)=0, \quad y^{\prime}(1)=4
$$

equation marks)

$$
\left(x^{2}+2 y^{2}\right) d x-2 x y d y=0
$$

f) Obtain a general solution of the equation

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)

$$
y \tan x \frac{d y}{d x}=\left(4+y^{2}\right) \sec ^{2} x
$$

a) By separation of variables solve

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x+y-3}{x-y-1} \tag{4marks}
\end{equation*}
$$

b) Solve the linear fractional equation
marks)
Find the power series solution of the differential equation using the method of frobenius
c)

$$
\begin{equation*}
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0 \tag{10marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

$$
\begin{equation*}
\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0 \tag{7marks}
\end{equation*}
$$

a) Solve
b) An object moves with simple harmonic motion on the x axis. Initially it is located at a distance 46 m away from the origin when $\mathrm{t}=0$ and has velocity $\mathrm{v}=15 \mathrm{~m} / \mathrm{s}$ and decelerating at $100 \mathrm{~m} / \mathrm{s}^{2}$
directed towards the origin O . find the equation of the position at any time t . (6 marks) c) Find the particular solution for the initial value problem $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=0 \quad y(0)=0 \quad y^{\prime}(0)=-4$.

QUESTION FOUR (20 MARKS)

a) Solve $\frac{d y}{d x}+y \cot x=\cos x$ to obtain the particular solution given that at $\quad x=\frac{\pi}{2} \quad y=\frac{5}{2}$ When . marks)

$$
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0
$$

b) Obtain a general solution of the equation
c) An electric circuit consists of an inductance of 0.1 Henry a resistance of 20 ohms and a i condenser of capacitance 25 microfarads. Find the charge q and the current at any time t,

$$
i=\frac{d q}{d t}=0
$$

given that the initial conditions are $\mathrm{q}=0.05$ coulombs and
when $t=0$ if

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E(t)
$$

marks)

QUESTION FIVE (20 MARKS)

$$
\begin{equation*}
\left(y^{3}+2 x\right) d x+\left(3 x y^{2}+1\right) d y=0 \tag{5marks}
\end{equation*}
$$

a) Show that is exact and then find its general solution.
b) The initial temperature of a body is and after 5 minutes its temperature is , from Newton's law of cooling it is known that the rate of cooling of a body is proportional to the temperature difference between the body and its surrounding room temperature. Use this to predict the temperature of the body after a further 5 minutes given that the room temperature was constant at $21^{\circ} \mathrm{C}$.
(7 marks)

$$
\frac{d x}{d t}+2 x=4 e^{3 t} \quad t=0, x=1
$$

c) Using laplace transform solve given that at

