THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

INSTITUTIONAL BASED PROGRAMME

UNIVERSITY EXAMINATIONS FOR DEGREE IN BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONIC ENG/ YR II, SEM II

SMA 2273: APPLIED MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer booklet
This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other two questions
This paper consist of THREE printed pages
Take g to be $9.8 \mathrm{~m} / \mathrm{s}^{2}$ where applicable

SECTION A (COMPULSORY)

QUESTION ONE (30 Marks)

a) A body of mass 5 kg is placed on a smooth table and is connected by a spring over a smooth pulley to another body of mass 3 kg , which hangs freely. The system is now released. Find the acceleration of the two bodies and the tension in the string.
[5 Marks]
b) A stone is thrown vertically upwards from the ground at a velocity of $30 \mathrm{~m} / \mathrm{s}$. How long will it take to reach 8.75 m above the ground on its way downwards?
c) Calculate the power supplied to a lift of total mass 500 kg which travels upwards at $1.5 \mathrm{~m} / \mathrm{s} \quad$ [5 Marks]
d) A lorry of mass 3 tonnes is towing a trailer of mass 2 tonnes up a hill inclined to the horizontal at The forward thrust of the lorry is $20,000 \mathrm{~N}$ and resistances may be ignored. What is the tension in the towbar?
[5 Marks]
e) A box of mass 8 kg , standing on rough horizontal ground is pulled by a string inclined at 30° to the $\mu=0,5$ horizontal. If the body is about to slide and , find the tension in the string. [5 Marks]

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T
$$

f) In the gas equation , what are the dimensions of the constants and .[5 Marks]

SECTION B (ANSWER ANY TWO QUESTIONS FROM THIS SECTION)

QUESTION TWO (20 Marks)

a) A non uniform plank AB of mass 30 kg and length 4 m has its centre of gravity at G . The plank is kept horizontal by parallel bars at E and $\mathrm{F}, 1$ metre apart so that $\mathrm{AE}=0.5 \mathrm{~m}$ as shown below.

If the forces of the bars on the plank are vertical and the ratio of the sizes of these forces is $5: 3$, find the forces on the bars and the position of G.
[7 Marks]
b) The mass of a bicycle and rider together is 70 kg . The cyclist produces a driving force of 40 N at the wheel, the total resistance of motion being 12 N . In what distance will the cyclist increase his speed from $3 \mathrm{~m} / \mathrm{s}$ to $7 \mathrm{~m} / \mathrm{s}$?
[5 Marks]
c) A particle of mass 400 g is attached to the end of a light string of length 1 metre. The string hangs vertically with its upper end, A, fixed. The particle is given a horizontal velocity of $2 \mathrm{~m} / \mathrm{s}$. Find the height to which it rises and the angle between the string and the vertical when it reaches this height.
[8 Marks]

QUESTION THREE (20 Marks)

a) State the three Newton's laws of motion
[3 Marks]
b) Sand is allowed to fall vertically at a steady rate of 100 grammes per second onto a horizontal conveyor belt moving at a steady velocity of $5 \mathrm{~cm} / \mathrm{s}$. Calculate the force on the belt.
[4 Marks]
c) Rain drops are falling through air with a velocity of $3 \mathrm{~m} / \mathrm{s}$. If a north wind blows at $18 \mathrm{~km} / \mathrm{h}$, find;
i. The direction in which the drops appear to fall to a person walking north at $6 \mathrm{~km} / \mathrm{h}$
ii. The velocity with which the drops would hit his umbrella.
[7 Marks]
d) A balloon of total mass 200 kg is floating at rest in the air. If a 10 kg sand bag is thrown out, with what acceleration will the balloon begin to ascend?
[6 Marks]

QUESTION FOUR (20 Marks)

a) If a particle is projected inside a tunnel which is 5 m high with a velocity of 60 metres per second, find the greatest possible angle of projection and the greatest possible range.
b) Two equal weights of mass 10 kg are attached to the ends of a thin string which passes over three smooth pegs in a wall arranged in the form of an equilateral triangle with one side horizontal. Find the thrust on each peg.
[6 Marks]
c) An effort of 150 N is required to just move a certain body up an inclined plane of angle 12° with the horizontal, the force acting parallel to the plane. If the angle of inclination was 15°, the effort required would be 172N. Find the weight of the body and the coefficient of fiction.
[9 Marks]

QUESTION FIVE (20 Marks)

A rod $A B$ of weight 12 N and length 30 cm has its centre of gravity at a point G where $A G$ is 10 cm . The end B lies on a smooth slope of inclination 30° to the horizontal. The rod is maintained in a horizontal position by a string attached at A. Find the direction of the string and the tension in it.

Show that the forces of magnitude 40 N acting at the vertices of the equilateral triangle ABC and parallel to the opposite sides (as shown in the figure below) form a couple.

Find the magnitude of the couple if each side of the triangle is 50 cm long.
[8 Marks]

