

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (YR II, SEM II)

SMA 2279: LINEAR AND BOOLEN ALGEBRA

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY/MARCH 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer booklet This paper consists of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions This paper consist of **THREE** printed pages

QUESTION ONE (30 MARKS)

$p \rightarrow$	$\rightarrow q \neg p \lor$	q				
<u>a)</u> Show that	and	are log	ically eq	uivalent		(6 marks)
		A = i	i – 2 j +	k	B = 4i - 4	j + 7k
<u>b)</u> Find the project	tion of the veo	ctor		on the vector	r	(5 marks)
				<i>r</i> = 3	i + 2j - 5k	
<u>c)</u> Find the work o	lone in movin	g an obje	ct along	a vector		if the force applied is
F = 2i - j - k						
						(3 marks)
		$A \bullet \overline{C}$	$\overline{C} + \overline{A} \bullet 0$	$(B+C)+A\bullet D$	$B \bullet (C + \overline{B})$	
<u>d)</u> Simplify the bo	olean express	ion				(5 marks)
	(3) (〔5〕	((5)		
A =	$\begin{pmatrix} 3 \\ 2 \end{pmatrix} B = \begin{pmatrix} \end{array}$	-1	$C = \begin{bmatrix} T \\ T \end{bmatrix}$,		
		ł	-			

$$\begin{vmatrix} 2 & 3 & 5 \\ -2 & 4 & -1 \\ 6 & -2 & 7 \end{vmatrix}$$

f) Evaluate by reduction method (4 marks)
$$a \quad A = 2i + aj + k \quad B = 4i - 2j - 2k$$

g) For what values of are and perpendicular (4 marks)

QUESTION TWO (20 MARKS)

$$X = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$$

$$X^{3} - 6X^{2} + 11X - 6I = 0$$

$$X^{3} - 6X^{2} + 11X - 6I = 0$$

$$X^{3} - 6X^{2} + 11X - 6I = 0$$

$$X^{3} - 6X^{2} + 11X - 6I = 0$$

$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$
b) Determine the truth table for (6 marks)

<u>c)</u> An automobile travels 3km due north, then 5km northeast. Determine the resultant displacement (6 marks)

	marksj		
d)	Classify e	ach of the following as a statement or not a statemen	nt
	(i)	Jack is tall	(1 mark)
	(ii)	Nairobi to Mombasa is 510km.	(1 mark)

QUESTION THREE (20 MARKS)

a) Verify that the proposition
$$p \lor \neg (p \land q)$$
 is a tautology (5marks)

b)	Convert th	e followi	ing numbers to the base shown in brackets	
	(i)	IBF_{16}	(base 10)	(3 marks)

- (ii) 58.3125₁₀ (base 2) (5marks)
- c) Derive the Boolean expression and construct the switching circuit (5 marks)

A	В	С	Z
0	0	0	1
0	0	1	0

0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

d) Write the inverse statement to "If I pass English, I will pursue law" (2 marks)

QUESTION FOUR (20 MARKS)

$$A = 2i - 3j - k \quad B = i + 4j - 2k \quad (A + B) \times (A - B)$$
a) If , find (7 marks)

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 2 \\ 1 & 2 & - \end{pmatrix} \quad A^{-1}$$
b) Given that , find , Hence or otherwise solve the following system.

$$x + 3y + 2z = 3$$

$$2x + 4y + 2z = 8$$

$$x + 2y - z = 10$$
(8 marks)

c) Using De Morgan's laws simplify the following Boolean expression (5 marks) $\left(\overline{\overline{A} \bullet B}\right) + \left(\overline{\overline{A} + B}\right)$

QUESTION FIVE (20 MARKS)

a) Evaluate the eigenvectors for each of the eigenvalue in

$$B = \begin{pmatrix} 4 & 2\\ 3 & -1 \end{pmatrix}$$
 (10 marks)

b) Construct a switching circuit for the following Boolean expression $A \bullet \left[A \bullet \overline{B} \bullet C + B \bullet \left(A + \overline{C} \right) \right]$

(5 marks)

A = 2i + 3j + 6k

c) Find an equation for the plane perpendicular to the vector and passing through the B = i + 5j + 3k(5 marks)

terminal point of the vector