THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)

Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (YR II, SEM II)

SMA 2279: LINEAR AND BOOLEN ALGEBRA

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
This paper consist of THREE printed pages

QUESTION ONE (30 MARKS)

$$
p \rightarrow q \quad \neg p \vee q
$$

a) Show that and are logically equivalent
(6 marks)
b) Find the projection of the vector on the vector (5 marks)

$$
r=3 i+2 j-5 k
$$

c) Find the work done in moving an object along a vector if the force applied is $F=2 i-j-k$

$$
A \bullet \bar{C}+\bar{A} \bullet(B+C)+A \bullet B \bullet(C+\bar{B})
$$

d) Simplify the boolean expression

$$
A=\left(\begin{array}{c}
3 \tag{5marks}\\
2 \\
-4
\end{array}\right) \quad B=\left(\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right) \quad C=\left(\begin{array}{l}
6 \\
7 \\
8
\end{array}\right) \quad 2 A-C+2 B
$$

e) Given that

$$
\left|\begin{array}{ccc}
2 & 3 & 5 \\
-2 & 4 & -1 \\
6 & -2 & 7
\end{array}\right|
$$

f) Evaluate
by reduction method
(4 marks)
a $\quad A=2 i+a j+k \quad B=4 i-2 j-2 k$
g) For what values of are
and perpendicular
(4 marks)

QUESTION TWO (20 MARKS)

$$
X=\left(\begin{array}{ccc}
3 & 2 & 2 \\
1 & 4 & 1 \\
-2 & -4 & -1
\end{array}\right)
$$

$$
X^{3}-6 X^{2}+11 X-6 I=0
$$

a) Show that the matrix satisfies the equation 3×3 3×3
where $\mathbf{0}$ is the zero matrix and I is the identity matrix. (6 marks)

$$
(p \rightarrow q) \leftrightarrow(\neg q \rightarrow \neg p)
$$

b) Determine the truth table for
c)_An automobile travels 3 km due north, then 5km northeast. Determine the resultant displacement marks)
d) Classify each of the following as a statement or not a statement
(i) Jack is tall
(1 mark)
(ii) Nairobi to Mombasa is 510 km .

QUESTION THREE (20 MARKS)

$$
p \vee \neg(p \wedge q)
$$

a) Verify that the proposition is a tautology
b) Convert the following numbers to the base shown in brackets
(i) $\quad \mathrm{IBF}_{16}$
(base 10)
(3 marks)
(ii) $\quad 58.3125_{10} \quad$ (base 2)
(5marks)
c) Derive the Boolean expression and construct the switching circuit

A	B	C	Z
0	0	0	1
0	0	1	0

0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

d) Write the inverse statement to "If I pass English, I will pursue law"

QUESTION FOUR (20 MARKS)

$$
A=2 i-3 j-k \quad B=i+4 j-2 k \quad(A+B) \times(A-B)
$$

a) If

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 4 & 2 \\
1 & 2 & -
\end{array}\right)^{2}
$$

b) Given that , find . Hence or otherwise solve the following system.
$x+3 y+2 z=3$
$2 x+4 y+2 z=8$
$x+2 y-z=10$
c) Using De Morgan’s laws simplify the following Boolean expression

$$
(\overline{\bar{A} \bullet B})+(\overline{\bar{A}+B})
$$

(10 marks)
b) Construct a switching circuit for the following Boolean expression
$A \bullet[A \bullet \bar{B} \bullet C+B \bullet(A+\bar{C})]$

$$
A=2 i+3 j+6 k
$$

c) Find an equation for the plane perpendicular to the vector
and passing through the

$$
B=i+5 j+3 k
$$

terminal point of the vector

