THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING/MECHANICAL ENGINEERING/CIVIL ENGINEERING

AMA 4102/SMA 2107: GEOMETRY

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions This paper consist of THREE printed pages

QUESTION ONE (30 MARKS)

a) Prove that

$$
\begin{equation*}
\frac{\sin 3 A \sin 6 A+\sin A \sin 2 A}{\sin 3 A \cos 6 A+\sin A \cos 2 A}=\tan 5 A \tag{4marks}
\end{equation*}
$$

$$
\cos \theta=5 / 13 \quad \sin \alpha=3 / 5 \quad \alpha
$$

b) Given that

$$
\tan (\alpha-\theta)
$$

of
c) In triangle and . Calculate the size of angle and hence find the area of the triangle.
d) Find the equations of the two straight lines which pass through the point and make angles of 60° with the line $\sqrt{3} x+y=1$

$$
\begin{equation*}
x^{2}+y^{2}-8 x+2 y+7=0 \tag{3,2}
\end{equation*}
$$

e) Verify that the point lies on the circle and find the equation of the tangent at this point.
f) Find the eccentricity, the coordinates of the foci and the equations of the asymptotes of the

$$
4 x^{2}-9 y^{2}=36
$$

hyperbola
g) Find the general solution of the equation
h) Find the Cartesian equations of

$$
\begin{array}{ll}
& r=a(1+2 \cos \theta) \\
\text { i) } & r \cos (\theta-\alpha)=P \\
\text { ii) } &
\end{array}
$$

QUESTION TWO (20 MARKS)

a) A triangle $\begin{aligned} & A B C \\ & \text { has sides } \\ & \text { and semi-perimeter } \\ & \text { (so that } a+b+c=2 s \\ & \text {). Show that }\end{aligned}$

$$
\Delta=\sqrt{\{s(s-a)(s-b)(s-c)\}}
$$

its area is
b) Solve the equation: $\cos 6 x+\cos 4 x+\cos 2 x=0$, for values of ${ }^{x}$ from $0^{0} 180^{0}$ to inclusive (5 marks)

$$
\tan \alpha=\frac{1}{5}, \tan \beta=\frac{4}{19} \quad \tan \gamma=\frac{2}{5}, \quad \tan (\alpha+\beta+\gamma)=1
$$

c) If
and show that
d) The elevations of the top Q of a flagstaff $P Q$ from three distant points A, B, C which are $\begin{array}{llll}P & \theta, 2 \theta \quad 3 \theta & A B=3 B C\end{array}$ in a horizontal line with are and respectively. Prove that approximately.
$\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$
a) Show that the tangents to the ellipse $90^{0} \quad\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=2$ differ by meet on the ellipse
b) The line joining the points and is taken as the diameter of a circle. Find the equation of this circle, the length of its radius and the coordinates of its centre. (5 marks)
c) Find

$$
\left(6, \frac{\pi}{3}\right)
$$

i) The rectangular coordinates of the point whose polar coordinates are
and

$$
(-5,12)
$$

ii) The polar coordinates of the point whose Cartesian coordinates are marks)
x

$$
2 \sin ^{-1} x+\sin ^{-1}\left(x^{2}\right)=\frac{1}{2} \pi
$$

d) Find from the equation

QUESTION FOUR (20 MARKS)

a) Show that has a polar equation (8 marks)

$$
r=\frac{1}{\pi} \theta \quad 0 \leq \theta \leq \pi
$$

b) Sketch the graph of where

$$
A(2,-2) \quad B(3,4)
$$

c) A circle passes through the point , and its centre is on the line Find its equation.
d) Show that the point of intersection of two perpendicular tangents to a parabola lies on its directrix.

QUESTION FIVE (20 MARKS)

$$
F(\cos \alpha+\mu \sin \alpha)=\mu W \quad \mu=\tan \lambda, \quad F=\frac{W \sin \lambda}{\cos (\alpha-\lambda)}
$$

a) If where prove that (5 marks)

$$
\sin (A+B+C)=\cos A \cos B \cos C(\tan A+\tan B+\tan C-\tan A \tan B \tan C)
$$

b) Sho that
c) A triangle has sides of lengths $m-n, m$ and $m+n$ where $m>n>0$. Use the cosine formula to

$$
\frac{1}{4} m<n<\frac{1}{2} m .
$$

show that if the triangle is obtuse angled, then
$B=60^{\circ}, b=14 \mathrm{~cm} \quad c=16 \mathrm{~cm}$.
d) Solve the triangle in which and

