THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL/ELECTRONICS/CIVIL/MECHANICAL ENGINEERING (YR I, SEM I)

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS
 SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of TWO printed pages
Question 1 (Compulsory - 30 Marks)

$$
z=y f(x)+x g(y)
$$

a) Derive the differential equation arising from

$$
x y=a
$$

b) Show that every curve of the family is orthogonal to the curve of the family $x^{2}-y^{2}=b[a, b \neq 0]$
c) Find the direction cosines of the tangent to the conic $P(x, y, z)$
$a x^{2}+b y^{2}+c z^{2}=1, x+y z=1$ at the point (5 marks)

$$
y^{2} z p-x^{2} z q=x^{2} y
$$

d) Find the general solution of the differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=12 x^{2}(t+1) \quad x=0, u=\cos 2 t \text { and } \frac{\partial u}{\partial x}=\sin t
$$

e) Solve given that at

$$
\begin{equation*}
u_{u}=a^{2} u_{x x} \tag{6marks}
\end{equation*}
$$

f) Show that the wave equation
is variable separable

Question 2 (20 Marks)

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

a) Find the orthogonal trajectories on the sphere
of it's intersection with the

$$
\frac{x y}{z}=c, c
$$

paraboloid
being a parameter
(12 marks)
$F(x, y, z)=0$ and $G(x, y, z)=0$
b) Consider a curve which is the intersection of the surfaces

$$
(d x, d y, d z) \alpha\left(\frac{\partial(F, G)}{\partial(y, z)}, \frac{\partial(F, G)}{\partial(z, x)}, \frac{\partial(F, G)}{\partial(x, y)}\right)
$$

that

Question 3 (20 Marks)

$$
\phi\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0
$$

a) Find the differential equation arising from (7 marks)

$$
\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0
$$

b) Verify that the differential equation is integrable
(5 marks)

$$
\begin{equation*}
\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)} \tag{8marks}
\end{equation*}
$$

c) Find the integral curves of the equations by eliminating one of the variables

Question 4 (20 Marks)

a) A bar length 2 metres is fully insulated along it's sides. It is initially at a uniform temperature of $10^{\circ} \mathrm{C}$ and at $t=0$ the ends are plunged into ice and maintained at a temperature of $0^{\circ} \mathrm{C}$. Determine an expression for the temperature at a point Pat a distance x from one end at any subsequent time t seconds after $t=0$.

$$
\begin{align*}
& \text { [use the heat conducton equation } \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t} \text {] } \\
& \qquad a p+b q+c z=0 \tag{15marks}
\end{align*}
$$

b) Solve the equation

Question 5 (20 Marks)

$$
z=a x+b y+c x y
$$

a) Eliminate the arbitrary constants a, b, c from
b) Solve by Laplace transform the boundary value problem

$$
\begin{aligned}
& \quad \frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}, u(o, t)=0, u(3, t)=0, U(x, o)=10 \sin 2 \pi x-6 \sin 4 \pi x \\
& \\
& \text { c) }\left(D_{x}^{2}+D_{x} D_{y}-6 D_{y}^{2}\right) z=0
\end{aligned}
$$

