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Question 1 (Compulsory - 30 Marks)

a) Derive the differential equation arising from 
)()( yxgxyfz 

(5 marks)

b) Show  that  every  curve  of  the  family  
axy 

is  orthogonal  to  the  curve  of  the  family
 0,22  babyx

(5 marks)

c) Find the direction cosines of the tangent to the conic  
1,1222  yzxczbyax

at the point
),,( zyxP

(5 marks)

d) Find the general solution of the differential equation 
yxzqxzpy 222 

(6 marks)
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e) Solve 

 112 2
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t
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andtux sin2cos,0 




(6 marks)

f) Show that the wave equation 
xxu uau 2

is variable separable (3 marks)

Question 2 (20 Marks)

a) Find  the  orthogonal  trajectories  on  the  sphere  

2222 azyx 
of  it’s  intersection  with  the

paraboloid 

cc
z

xy
,

 being a parameter (12 marks)

b) Consider a curve which is the intersection of the surfaces
    0,,0,,  zyxGandzyxF

. Prove

that 
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(8 marks)

Question 3 (20 Marks)

a) Find the differential equation arising from 
  0, 222  zyxzyx

(7 marks)

b) Verify that the differential equation 
  03 3232  dzxdyxydxyzx

is integrable (5 marks)

c) Find the integral curves of the equations 
     yxz

dz

azyxx

dy

azyxy

dx








by eliminating 

one of the variables (8 marks)

Question 4 (20 Marks)

a) A bar length 2 metres is fully insulated along it’s sides.  It is initially at a uniform temperature of
10oC and  at  t  =  0 the  ends  are  plunged  into  ice  and  maintained  at  a  temperature  of  0oC.
Determine an expression for the temperature at a point Pat a distance x from one end at any
subsequent time t seconds after t = 0.
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2 1

(15 marks)

b) Solve the equation 
0 czbqap

(5 marks)
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Question 5 (20 Marks)

a) Eliminate the arbitrary constants a,b,c from 
cxybyaxz 

(6 marks)

b) Solve by Laplace transform the boundary value problem 

xxoxUtutou
x

u

t

u  4sin62sin10),(,0),3(,0),(,4
2
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
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


(10 marks)

c) Solve 

  06 22  zDDDD yyxx

(4 marks)
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