THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2371: PARTIAL DIFFERENTIAL EQUATIONS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012
TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (Compulsory)

QUESTION ONE (30 MARKS)
a) Define a partial differential equation and give an example

$$
\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0
$$

hence find the differential equation arising from

$$
\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-2 x^{2}}
$$

b) Find the integral curves of the equation

$$
\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0
$$

c) Show that the equation
d) Show that the wave equation

$$
r+6 s+9 t=0
$$

e) Solve the equation

$$
\begin{equation*}
x \frac{\partial x}{\partial x} y \frac{\partial x}{\partial y}=x^{2}+y^{2} \tag{8marks}
\end{equation*}
$$

f) Express the partial differential equation in polar coordinates and hence solve the equation.

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)

$$
x^{2}+y^{2} 2 f y z+d=0
$$

a) Find the orthogonal trajectories on the surface of its intersection with the planes $\quad Z=c$ where c is a parameter [10 Marks]

$$
F(x, y, z)=0 \quad G(x, y, z)=0
$$

b) Consider a curve which is the intersection of the surfaces and

$$
(d x, d y, d z) \alpha\left[\frac{\partial(F, G)}{\partial(y, z)}, \frac{\partial(F, G)}{\partial(z, x)}, \frac{\partial(F, G)}{\partial(x, y)}\right]
$$

prove that
. Hence show that the directional cosine

$$
p(x, y, z) \quad f x^{2}+g y^{2}+h z^{2}=1, x+y+z=1
$$

of the tangent at the point to the conic
are

$$
(g y-h z, h z-f x-g y)
$$

proportional to
(10 marks)

QUESTION THREE (20 MARKS)

a) Solve the following heat distribution equation by the method of separation of variables

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}-\pi \leq x \leq \pi, t>0
$$

$u(0, t)=u(\pi, t)=0 t>0 \quad u(x, 0)=\left\{\begin{array}{cc}a & -\pi<x<0 \\ -a & 0<x<\pi\end{array}\right.$ and

$$
v=f(y-3 x)
$$

b) Show that where f is arbitrary function is the general solution of the equation

$$
\frac{\partial v}{\partial x}+3 \frac{d v}{d y}=0
$$

Hence find a particular solution which satisfies $v(0, y)=4 \sin y$.
marks)

QUESTION FOUR (20 MARKS)

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=u
$$

a) Using Laplace transform method, solve the partial differential equation

$$
u(x, 0)=e^{-5 x} \text { and } u(x, t)
$$

to the initial conditions is bounded for $x>0 t>0$.
(12 marks)

$$
\left(D_{x}^{2}+3 D_{x} D_{y}+2 D_{y}^{2}\right)_{z}=12 x y
$$

b) Solve
(8 marks)

QUESTION FIVE (20 MARKS)

$$
z=p x+9 y+p q
$$

a) Find in its simplest form the integral surface of (whose solution is $z=a x+b y+a b$

$$
x=\tau, y=\tau, z=\tau^{2}
$$

) passing through the curve

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

b) Find the partial differential equation arising from

$$
\frac{\partial^{3} z}{\partial x^{2} \partial y}+18 x y^{2}+\sin (2 x-y)=0
$$

c) Solve by direct integration

