

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MECHANICAL & AUTOMOTIVE ENGINEERING

SMA 2379: LINEAR & BOOLEAN ALGEBRA

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

Question One (Compulsory)

- **a)** Define the following terms:
 - (i) A tautology.
 - (ii) Matrix
 - (iii) Orthogonality
- b) Use your knowledge of the truth table to determine the truth values of the following compound statement: (4 marks)

(1 marks) (1 mark) (1 mark)

 $x^2 + 2y^2 = 6$ e) Find the unit vectors that are tangent and normal to the curves at the given point: at (2,1)(5 marks)

Question Three

$$A - B = A \cap B^1$$
a) Show that
(5 marks)

b) Define the following terms:

(i)	Logic	(1 mark)
(ii)	Proposition	(1 mark)
(iii)	Construct a truth table for the following statement.	(8 marks)

$$P \rightarrow (q \wedge r)$$

c) Using the concepts of Boolean algebra, determine all the values that make the following statements true.

	4+3=7 $x+5=8$	
(i)	and	(1 marks)
	x + 4 = 7 $4 + 6 = 10$	
(ii)	and	(1 mark)

d) Use your knowledge of the truth tables to determine the truth values of the following compound statements.

$$2+3=5$$
 $1+1=3$ (3 marks)

Question Four

Find

(i) (ii)

a) Find the value of x if the matrix A is a singular matrix. (1 v)

$$A = \begin{pmatrix} 4 & x \\ 2 & 5 \end{pmatrix}$$
(3 marks)

$$A = \begin{pmatrix} -5 & 2 \\ 2 & -2 \end{pmatrix}$$
b) Consider the matrix
Find the:
(i) Eigen values
(ii) Eigen vectors
(3 marks)
(4 marks)

$$P(2,-3,4)$$
 $x+2y+2z$

c) Find the distance d between the point and the plane

(5 marks)

d)	Show that the statement $(p \lor q) \land q \to p$ is a tautology.	(5 marks)				
Question Five						
a)	$A = \begin{bmatrix} 2.7 & 1.8 \\ 0 & 0.9 \\ 9 & -4.5 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 5 & -1 \\ 4 & 0 & 2 \\ -6 & -3 & 2 \end{bmatrix}$ If and					
	Calculate: $2(A + B)$					
	2(A+B) (i)	(2 marks)				
	2A-3B (ii)	(2 marks)				
	BA (iii)	(2 marks)				
b)	Find the inverse of the matrix: $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$					
		(7 marks)				
c)	Use Cramer's rule to solve the simultaneous equation: 2x + 3y = 5	(6 marks)				
	3x - y = 2	(6 marks)				