THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MECHANICAL \& AUTOMOTIVE ENGINEERING

SMA 2379: LINEAR \& BOOLEAN ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) Define the following terms:

(i)	A tautology.	(1 marks)
(ii)	Matrix	$\mathbf{(1 ~ m a r k) ~}$
(iii)	Orthogonality	$\mathbf{(1 ~ m a r k)}$

b) Use your knowledge of the truth table to determine the truth values of the following compound statement:
(4 marks)

$$
2+3=5 \quad 1+1=3 \text { and } \text { State the properties of electrostatic forces. }
$$

$$
\underset{\sim}{a}=4 i+3 k \quad \underset{\sim}{b}=-2 i+j+5 k,
$$

c) If and find:

$$
|\underset{\sim}{a}|
$$

(i)

$$
|2 \underset{\sim}{a}+3 \underset{\sim}{b}|
$$

(ii)
$\mathrm{p}(4,3) \quad \mathrm{L} ; \mathrm{x}+3 \mathrm{y}=6$
d) Using vector methods, find the distance d between and the line
e) (i) State any THREE properties of a determinant of matrix.
(ii) Determine the determinant of the matrix below.

$$
\mathrm{B}=\left[\begin{array}{lll}
\mathrm{b} 11 & \mathrm{~b} 12 & \mathrm{n} 13 \\
\mathrm{~b} 21 & \mathrm{~b} 22 & \mathrm{~b} 23 \\
\mathrm{~b} 11 & \mathrm{~b} 12 & \mathrm{~b} 13
\end{array}\right]
$$

$$
A(0,0,1) B(2,0,0) \quad C(0,3,0)
$$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)
$$

g) Find the eigen values of Question Two

$$
x^{2}+2 y^{2}=6
$$

e) Find the unit vectors that are tangent and normal to the curves at the given point: $(2,1)$

Question Three

$$
A-B=A \cap B^{1}
$$

a) Show that
b) Define the following terms:
(i) Logic
(1 mark)
(ii) Proposition
(iii) Construct a truth table for the following statement.

$$
P \rightarrow(q \wedge r)
$$

c) Using the concepts of Boolean algebra, determine all the values that make the following statements true.

$$
4+3=7 \quad x+5=8
$$

(i) and

$$
x+4=7 \quad 4+6=10
$$

(ii) and
d) Use your knowledge of the truth tables to determine the truth values of the following compound statements.

$$
\begin{equation*}
2+3=5 \text { and } 1+1=3 \tag{3marks}
\end{equation*}
$$

Question Four

a) Find the value of x if the matrix A is a singular matrix.

$$
\begin{align*}
& A=\left(\begin{array}{ll}
4 & x \\
2 & 5
\end{array}\right) \\
& A=\left(\begin{array}{cc}
-5 & 2 \\
2 & -2
\end{array}\right) \tag{3marks}
\end{align*}
$$

b) Consider the matrix

Find the:
(i) Eigen values
(3 marks)
(ii) Eigen vectors

$$
P(2,-3,4) \quad x+2 y+2 z
$$

c) Find the distance d between the point and the plane
d) Show that the statement $(p \vee q) \wedge \quad q \rightarrow p$ is a tautology.

Question Five

$$
A=\left[\begin{array}{cc}
2.7 & 1.8 \\
0 & 0.9 \\
9 & -4.5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
3 & 5 & -1 \\
4 & 0 & 2 \\
-6 & -3 & 2
\end{array}\right]
$$

a) If and

Calculate:

$$
2(A+B)
$$

(i)

$$
2 A-3 B
$$

(ii)
$B A$
(iii)
b) Find the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

c) Use Cramer's rule to solve the simultaneous equation:

$$
\begin{aligned}
& 2 x+3 y=5 \\
& 3 x-y=2
\end{aligned}
$$

