THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING (YR III, SEM 1)

SMA 2471: NUMERICAL ANALYSIS I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions This paper consist of TWO printed pages

QUESTION ONE (30 MARKS)

$2 x^{2}-6 x-3=0 \quad x=3 \quad x=4$
a) Show that there exists a root to the quadratic equation
between
$2 x^{2}-6 x-3=0$ and.

Use Newton Raphson method to find the positive root of the equation
correct to 3

$$
x_{0}=3
$$

significant figures. (Take)
[5 Marks]

$$
\cos x^{0}
$$

b) For the table given below, find using the quadratic Newton's forward difference interpolating polynomial.
[5 Marks]

x^{0}	30	60	90
$\cos x^{0}$	0.866	0.500	0.000

c) Use Simpson's rule to approximate
$\int_{2}^{4} \sqrt{(1+x)} d x \quad h=0.5$
with step size
[4 Marks]

$$
\begin{equation*}
f(x)=x^{2} \tag{2.0}
\end{equation*}
$$

d) Given the following values of , find an approximate value of

x	2.0	2.2	2.6
$f(x)$	4.00	4.840	6.76

e) An integral related to the complete elliptic integral is defined by

$$
K(k)=\int_{0}^{2 \pi} \frac{d x}{\left[1-(\sin k \sin x)^{2}\right]^{1 / 2}}
$$

k
From a table of values of these integrals, we find that for various values of measured in degrees, $K(1)=1.5709 \quad K(4)=1,5727 \quad K(6)=1.5751 \quad K(3.5)$, Find \quad and \quad, using a second - degree interpolating polynomial.
[5 Marks]

$$
F(x)=\left(\frac{7 x-2}{2}\right)^{\frac{1}{3}} \quad 2 x^{3}-7 x+2=0
$$

f) Investigate the convergence of for the equation within the

$$
[-2,-1] \quad[0,1]
$$

closed intervals and
[6 Marks]

QUESTION TWO (20 MARKS)

a) Show that the truncation error for the trapezoidal rule, over the range of integration is
$-\frac{1}{12} h^{2}(b-a) \max f^{\prime \prime}(\xi), \quad a<\xi<b$
[8Marks]

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

b) Estimate
correct to two decimal places using trapezoidal rule
[12 Marks] QUESTION THREE (20 MARKS)
a) Apply Gauss - Chebyshev quadrature 3-point formula to evaluate

$$
\int_{-1}^{1} \frac{x^{4}}{\sqrt{\left(1-x^{2}\right)}} d x
$$

[5 Marks]

$$
a, b, c \quad \int_{0}^{2 h} f(x) d x=a f(0)+b f(h)+c f(2 h)+E
$$

b) Determine so that is exact
[15 Marks] QUESTION FOUR (20 MARKS)

$$
\int_{0}^{1} \frac{1}{1+x} d x
$$

a) Evaluate using Gause-Legendre 3-point formula [4Marks]
b) Apply the classical fouth order Runge-Kutta method to approximate the solution to the initial value problem
$\frac{d y}{d t}=\left(\frac{y}{t}\right)^{2}+\left(\frac{y}{t}\right) \quad 1 \leq t \leq 1.2, \quad y(1)=1, \quad h=0.1$
[16Marks]

QUESTION FIVE (20 MARKS)

$$
x y^{\prime}=x-y ; \quad y(2)=2 \quad x=2.1
$$

a) Solve by Taylor series the differential equation at , correct to 5 decimal places.
[13 Marks]

$$
\frac{d y}{d x}=y-\frac{2 x}{y}, \quad y(0)=1
$$

b) Use the Euler method to find an approximation to the initial value problem

$$
0 \leq x \leq 0.2 \quad h=0.1
$$

in the range with step size
[7 Marks]

