

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN BUILDING & CIVIL ENGINEERING (YR III, SEM 1)

SMA 2471: NUMERICAL ANALYSIS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY/MARCH 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of **FIVE** questions

Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions This paper consist of **TWO** printed pages

QUESTION ONE (30 MARKS)

a)	Show that there exists a root to the quadratic equa				$2x^2 - 6x$ uation	x - 3 = 0 betwee $2x^2 - 6x$	x = 3 en an -3 = 0	x = 4.
	Use Newton Raphson method to find the positive root of the equation correct							rrect to 3
	$x_0 = 3$							
	significant figures. (Take)						[5 Ma	ırks]
	$\cos x^0$							
b)	For the t polynom	able given t 11al.	elow, find	using the	quadratic Newt	on's forward diff	ference inte [5 Ma	rpolating trks]
	x^0	30	60	90				
	$\cos x^0$	0.866	0.500	0.000				
					c) Use Sin	npson's rule to a	pproximate	
	$\int_{2}^{4} \sqrt{1 + 1}$	$\int_{2}^{4} \sqrt{(1+x)} dx \qquad \qquad h = 0.5$				1		
		with	step size		[4 Marks]			

From a table of values of these integrals, we find that for various values of measured in degrees, K(1) = 1.5709 K(4) = 1,5727 K(6) = 1.5751 K(3.5). Find , using a second –degree and interpolating polynomial.

f) Investigate the convergence of [-2, -1] [0,1] closed intervals and

QUESTION TWO (20 MARKS)

 $\int_0^1 e^{-x^2} dx$

a.b.c

QUESTION FOUR (20 MARKS)

so that

|a,b|a) Show that the truncation error for the trapezoidal rule, over the range of integration is $-\frac{1}{12}h^{2}(b-a)\max f''(\xi), \quad a < \xi < b$ [8Marks]

 $\int_{0}^{2h} f(x)dx = af(0) + bf(h) + cf(2h) + E$

b) Estimate correct to two decimal places using trapezoidal rule **QUESTION THREE (20 MARKS)**

a) Apply Gauss – Chebyshev quadrature 3-point formula to evaluate

$$\int_{-1}^{1} \frac{x^4}{\sqrt{1-x^2}} \, dx$$

b) Determine

X	2.0	2.2	2.6
f(x)	4.00	4.840	6.76

e) An integral related to the complete elliptic integral is defined by

 $K(k) = \int_0^{2\pi} \frac{dx}{\left[1 - (\sin k \sin x)^2\right]^{\frac{1}{2}}}$

 $F(x) = \left(\frac{7x-2}{2}\right)^{\frac{1}{3}}$ $2x^3 - 7x + 2 = 0$ for the equation within the [6 Marks]

f'(2.0)

k

[5 Marks]

[12 Marks]

[5 Marks]

[5 Marks]

[15 Marks]

is exact

$$\int_0^1 \frac{1}{1+x} \, dx$$

- a) Evaluate using Gause-Legendre 3-point formula
- [4Marks] b) Apply the classical fouth order Runge-Kutta method to approximate the solution to the initial value problem

$$\frac{dy}{dt} = \left(\frac{y}{t}\right)^2 + \left(\frac{y}{t}\right), \quad 1 \le t \le 1.2, \quad y(1) = 1, \quad h = 0.1$$

[16Marks]

QUESTION FIVE (20 MARKS)

a) Solve by Taylor series the differential equation decimal places.

 $xy' = x - y; \quad y(2) = 2 \qquad x = 2.1$ at , correct to 5 [13 Marks] $\frac{dy}{dx} = y - \frac{2x}{y}, \quad y(0) = 1$

b) Use the Euler method to find an approximation to the initial value problem 0 < . < 0 2 0 1

	$0 \le x \le 0.2$	n = 0.1.	
in the range	with ste	p size	[7 Marks]