THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL/ELECTRONICS ENGINEERING

SMA 2471: NUMERICAL ANALYSIS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages
Question 1 (Compulsory - 30 Marks)

$$
f(x)=\sin x, x=0^{\circ}(10) 50^{\circ}
$$

a) By tabulating and using Newton's forward difference interpolation formula of degree four, estimate $\sin 7^{\circ}$ to four decimal places.
(6 marks)

$$
\frac{d y}{d x}=-y \text { for } x=0.6 \text { and } h=0.2
$$

b) Use Euler's modified method to solve with boundary conditions when $y=1$ when $x=0$

$$
\begin{equation*}
\int_{0}^{6} \sqrt{1+x^{4}} d x \tag{7marks}
\end{equation*}
$$

c) Estimate
using Simpson’s Rule with $\mathrm{n}=6$

$$
x^{2}-5 x+2=0
$$

d) Apply Newton-Raphson method to find the real roots of places
correct to 4 decimal
(7 marks)
e) Determine the maximum step size to be used in the tabulation of the truncation error for Linear interpolation is correct to 5 decimal places.

Question 2 (20 Marks)

a) Using Picard's process of successive approximations, obtain a solution to the fifth approximation

$$
\frac{d y}{d x}=y+x, y(0)=1, h=0.1
$$

of the equation
(6 marks)

$$
\int_{0}^{1} \frac{d x}{1+x}
$$

b) Use Romberg method to computer correct to 4 decimal places given that for
$h=0.5, I(h)=0.7084, I\left(\frac{h}{2}\right)=0.6970 \quad I\left(\frac{h}{4}\right)=0.6941$
c) Fill in the table for the missing values of $f(x)$ correct to 3 decimal places

x	$\pi / 6$	$\pi / 9$	$5 \pi / 18$	$\pi / 3$	$7 \pi / 18$
$F(x)=\sin ^{2} \frac{1}{2} x$					

Use Simpson's Rule to find the area under the curve represented by $f(x)$. Determine the truncation effort expected in the calculated value
(10 marks)

Question 3 (20 Marks)

$$
\frac{d y}{d x}=x^{3}+y^{2}, y(0)=0
$$

a) For the equation use $h=0.2$ to find $y(0.2), y(0.4)$ and $y(0.6)$ using the
Runge - Kutta fourth order method.
(10 marks)

$$
I=\int_{5}^{12} \frac{d x}{x}
$$

b) Apply the Gauss' quadrature formula to compute the integral
choosing $\mathrm{n}=3$ in the interval (-1,1)
c) Using $\sin 0.1=0.09983$ and $\sin 0.2=0.198867$ find an approximate value of $\sin 0.15$ by Lagrange interpolation.

Question 4 (20 Marks)
a) By means of Newton's divided difference formula find the value of $f(15)$ from the following table

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

(6 marks)

$$
\frac{d y}{d x}=x+y
$$

b) Using the Taylor's series method to the $4^{\text {th }}$ order derivative, estimate $y(0,5)$ given that $y(0)=1$
with \quad taking $\mathrm{h}=0.1$ to 4 decimal places
(6 marks)
c) Approximate $y(0.4)$ using the Adams-Bashforth predictor corrector method for the equation $\frac{d y}{d x}=-2 x y$
given that:

x	0	0.1	0.2	0.3	0.4
y	1.00	0.990	0.9608	0.9139	0.8522

(7 marks)
Question 5 (20 Marks)

$$
\int_{0}^{1} \frac{d x}{1+x}
$$

a) Use Trapezoidal rule to evaluate
b) Apply Newton's divided difference to find the value of if $f(1=3), f(3)=31, f(6)=223, f(10)=1011, f(11)=1343$
(8 marks)

$$
U_{x} \quad U_{0}=8, U_{1}=11, U_{4}=68, U_{5}=123
$$

c) Find the function in powers of $\mathrm{x}-1$ given that

