

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2303: SOIL MECHANICS I

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer question **ONE** (**Compulsory**) and any **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

### **Question One (Compulsory)**

- a) Outline negative construction effects cause by clay minerals
- b) Derive from first principle the expression used to determine dry density (y<sub>d</sub>) of a soil based on bulk density (y<sub>b</sub>) and moisture content (w) (4 marks)
- c) A saturated soil sample was tested in a laboratory. The saturated density and moisture content were 2.045 mg/m3 and 23% respectively. Use a soil model to determine:
  - (i) Dry density
  - (ii) Void ratio

Page 1

(5 marks)

#### (iii) Particle specific gravity

(iv) Porosity

#### **Question Two**

- a) Explain the following terms as applied to soil classification:
  - (i) Coefficient of uniformity(ii) Plasticity index
- b) Outline main aspects of the British soil classification system
- c) Grading curve for an organic soil from a construction site is as shown in figure 1.
  - (i) Use the curve to describe the soil
  - (ii) Predict group symbol for the soil
  - (iii) Plastic limit for the soil was tested and foe dot be 25% while test results for liquid limit were as follows:

| Test number                | 1     | 2     | 3     |
|----------------------------|-------|-------|-------|
| Mass of empty tin          | 24.04 | 24.75 | 23.30 |
| Mass of tin + wet soil (g) | 45.04 | 49.21 | 48.28 |
| Mass of tin + dry soil (g) | 39.16 | 42.00 | 40.88 |
| Number of blows            | 34    | 17    | 12    |

Use figure 2 provided to determine the liquid limit.

(iv) Using results obtained in (i), (ii), (iii) and figure 3 provided, classify the organic soil.

(10 marks)

#### **Question Three**

- **a)** Explain the following terms as applied to soil compaction:
  - (i) Zero air voids dry density
  - (ii) Optimum moisture content
- b) State FOUR limitations that apply to standard compaction methods (4 marks)
- **c)** A standard compaction test was carried out on clay soil of specific gravity 2.55. The results obtained were as follows:

| Moisture     | 20   | 18.2 | 16.8 | 25.1 | 14.5 | 12.5 |
|--------------|------|------|------|------|------|------|
| content (%)  |      |      |      |      |      |      |
| Bulk density | 2184 | 2160 | 2155 | 2140 | 2125 | 2058 |
| $(Kg/m^3)$   |      |      |      |      |      |      |

Draw a compaction graph and use it to determine:

- (i) Compaction parameters
- (ii) Air voids ratio considering parameters obtained in c(i)

#### **Question Four**

(12 marks)

(11 marks)

(4 marks)

(6 marks)

(4 marks)

- a) State aims of compacting soils in a laboratory
- b) Explain the disadvantages of changing from a lighter compaction effort to a heavier compaction effort. (6 marks)
- **c)** (i) Illustrate typical graphical results for soil compaction of a coarse grained soil and a fine grained soil on same axes.
  - (ii) Explain the graphical presentation in (c) (i)
- d) (i) Briefly explain the effect of clay minerals on permeability of coarse soils(ii) A test soil sample was prepared by filling three soil types A, B, C in a cylindrical tube 8cm a diameter. The length and coefficient of permeability for the soils are as follows:

| Soil type | Length (cm) | Coefficient of Permeability (m/s) |
|-----------|-------------|-----------------------------------|
| Α         | 15.2        | 9.8 x 10 <sup>-3</sup>            |
| В         | 10.0        | 2.2 x 10 <sup>-5</sup>            |
| С         | 8.0         | 4.3 x 10 <sup>-4</sup>            |

Determine the average coefficient of permeability for the test sample if water was allowed to flow in the following directions:

- Vertical
- Horizontal

#### **Question** Five

**a)** A fine grained soil was tested in a falling head permeability apparatus in two stages. The following results were obtained during state 1 of the test:

| Radius of standpipe used (mm)                            | 6            |
|----------------------------------------------------------|--------------|
| Cross-sectional area of test specimen (mm <sup>2</sup> ) | 2800         |
| Length of the sample (mm)                                | 50           |
| Initial water level in stand pipe (mm)                   | 1000         |
| Final water level in stand pipe (mm)                     | 600          |
| Time taken for the water level to decrease               | 2 min 58 sec |

- (i) Determine coefficient of permeability for the soil
- (ii) In stage 2, the soil sample was reduced to one half of its original length. Another soil of permeability 8.0 x 10<sup>-3</sup>mm/s was added and the experiment repeated. Determine the expected permeability for combined layers considering a vertical flow direction. (4 marks)
- **b)** (i) With the aid of a sketch, explain the term "flownet" as applied to determination of seepage under water retaining structures.
  - (ii) State conditions for application of flow nets
  - (iii) Illustrate the conditions in b(ii) on a sketch
- **c)** Use figure 4 provided to determine:
  - (i) Rate of seepage under the sheet pile

## (5 marks)

Page 3

### (4 marks)

## (5 marks)

(ii) "Quick sand" conditions if particle specific gravity and void ratio of the soil are 2.66 and 0.6 respectively. Take  $K = 4.56 \times 10^{-4} \text{ m/s}$