

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE 13M)

ECE 2303: SOIL MECHANICS I

END OF SEMESTER EXAMINATION SERIES: AUGUST 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination Answer Booklet This paper consists of FIVE questions. Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

SECTION A

Question One (Compulsory)

a)	Briefly explain how soil is formed.	(4 marks)
b)	What are the TWO broad but distinct classes of soils used by civil engineers?	(1 mark)
c)	Briefly discuss the FOUR field identification tests that are used to distinguish silt from	n clay. (8 marks)
d)	Outline the factors that affect permeability of soils.	(8 marks)
e)	 A saturated sample of undisturbed clay has a volume of 19.2cm³ and weighs 32.5gm. drying, the weight reduces to 20.2gm determine: (i) Water content 	After oven (2 marks)

Specific gravity (3 marks) f) Briefly discuss the **TWO** forces that play a role in the structure of soils (4 marks) **SECTION B (Attempt any TWO questions) Question Two** a) Define: Porosity Void ratio Water content Degree of saturation (8 marks)

- **b**) A moist sample of soil has a volume of 464cm³ in its natural state and weighs 793gm. The dry weight is 735gm and has a specific gravity of 2.68. Determine:
 - (i) Void ratio
 - **(ii)** Porosity

(ii)

(i) **(ii)**

(iii)

(iv)

- Water content and (iii) Degree of saturation (iv)
- c) Briefly discuss the following grain shape properties

Diffing	y discuss the following grain shape properties.	
(i)	Bulky	
(ii)	Flaky	(4 marl

Question Three

(ii)

- a) State Stoke's Law. Outline the assumptions considered in applying stoke's law. (5 marks)
- **b)** Particles of 5 different sizes are mixed in the proportions shown below and enough water added to make 1000cm³ of the suspension. The temperature of the suspension is 20°C.

Particle Size	
(mm)	Weight (g)
0.050	6
0.020	20
0.010	15
0.005	5
0.001	4
Total	50

X $\mu = 1.11 \times 10^{-5} \, g.s \, / \, cm^2$

Take Gs = 2.70 w = 1g/cm³, viscosity

- What is the largest particle size at a depth of 6cm, 8mins after start of sedimentation? **(i)**
 - (3 marks) What is the Gs of the suspension at a depth of 6cm after 8 minutes of sedimentation

(5 marks)

How long should the sedimentation be allowed so that all the particles have settled below (iii) 6cms? (4 marks)

(4 marks)

(8 marks)

c) Define specific gravity (Gs) of a material. Distinguish this from unit weight (s) (3 marks)

Question Four

a) Specific gravity for a soil was obtained in a laboratory test. The following measurements were made $W_s = 100g$, $W_1 = 608g$, $W_2 = 550g$. By oversight, $2cm^3$ of air remained entrapped in the suspension when the weight W_1 was taken.

	(i) (ii)	Will the value of Gs be lower or higher than the true value? Calculate the percentage error	(5 marks) (3 marks)
b)	Briefly	v discuss Atterberg limite in soils	(8 marks)
c)	Define	soil compaction. State the two main factors affecting soil compaction.	(4 marks)

Question Five

- a) Outline the assumptions considered when computing stresses at a point using Boussinesq's formula. (4 marks)
- b) Three parallel strip footings 3m wide each and 5m apart centre to centre transmit contact pressures of 200, 150 and 100KN/m² respectively. Calculate the vertical stress due to the combined loads beneath the centres of each footing at a depth of 3m below the base. Assume the footings are placed at a depth of 2m below the ground surface. Use Boussinesq's equation for line loads. (6 marks)
- c) Briefly discuss the effects of compaction on engineering behavior of soils. (10 marks)