

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN ENVIRONMENTAL PHYSICS & RENEWABLE ENERGY

APS 4208: SPECTROSCOPIC METHODS

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	Define the following terms: (i) Population (ii) Sample	(1 mark) (1 mark)
b)	(i) What does the term sampling mean?(ii) Briefly describe the advantages of sampling	(1 mark) (4 marks)
c)	Clearly distinguish between the following. Give an example in each case:(i) Finite and infinite population(ii) Homogeneous and heterogeneous population	(4 marks) (4 marks)

- **d)** Define the terms:
 - (i) Mean
 - (ii) Median

e) Suppose you randomly sampled eight acres of land in Kwale County for a non-indigenous weed and came up with the following counts of this weed in the region.

	• • • •	40 Find Mean) Median i) mark)	Mod	43 e	81	106	106	and 115	(3 marks (2 marks (1	s)
f)	• •	e followi ectromag equency Wavel	gnetic	wave					(1 mark) (1 mark) (1 mark))

g) Calculate the frequency of electromagnetic radiation that has a wavelength of 1.315µm. The speed of light in vacuum is 3 x 108ms⁻¹
 (3 marks)

Question Two

a)	Define the term Statistics	(1 mark)
b)	Citing examples discuss at least FOUR probability sampling techniques	(12 marks)
c)	Discuss TWO non-probability sampling techniques. Give an example in each case	(6 marks)
d)	What is data analysis	(1 mark)

Question Three

a)	Why is graphical representation of data important?	(2 marks)
b)	Define frequency as used in Statistics	(1 mark)

c) Suppose a sample of 38 university students was asked their weight and the following data obtained:

130	108	135	120	97	110
130	112	123	117	170	124
120	133	89	130	160	126
110	135	115	127	102	130
89	135	89	137	115	110
105	130	115	100	125	120
120	120				

Suppose we want '9' class intervals

- (i) Compute the class width
- (ii) Construct a frequency distribution table

(3 marks) (4 marks)

	(iii)	Construct the corresponding histogram	(4
	mar (iv) Wit	ks) h reference to the histogram, discuss results	(5 marks)
)	What is meant l	oy null hypothesis	(1 mark)

Question Four

d)

The scores of students in a Mathematics test are:

50	35	70	50	30	40
65	50	75	45	53	75
60	55	55	40	55	50

 a) Find: (i) The mean score (ii) The standard deviation 	(3 marks) (5 marks)					
b) Make a line plot of the scores	(4 marks)					
c) Given that the pass mark is 50, discuss the students performance in the test	(6 marks)					
d) How would you gauge the student's performance? Explain your answer	(2 marks)					
Question Five						
a) Define spectroscopy	(2 marks)					
b) Differentiate between uv/vis and infra-red spectroscopy	(4 marks)					
c) Discuss FIVE basic components of an optical instrument	(10 marks)					
d) Briefly describe the working of an atomic absorption spectrophotometer	(4 marks)					