

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN ENVIRONMENTAL PHYSICS \& RENEWABLE ENERGY
APS 4208: SPECTROSCOPIC METHODS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Population
(ii) Sample
b) (i) What does the term sampling mean?
(ii) Briefly describe the advantages of sampling
c) Clearly distinguish between the following. Give an example in each case:
(i) Finite and infinite population
(ii) Homogeneous and heterogeneous population
d) Define the terms:
(i) Mean
(ii) Median
e) Suppose you randomly sampled eight acres of land in Kwale County for a non-indigenous weed and came up with the following counts of this weed in the region.
$\begin{array}{llllllll}100 & 40 & 34 & 43 & 81 & 106 & 106 & \text { and } 115\end{array}$
Find
(i) Mean
(3 marks)
(ii) Median
(iii) Mode
f) Define the following terms:
(i) Electromagnetic wave
(ii) Frequency
(iii) Wavelength
g) Calculate the frequency of electromagnetic radiation that has a wavelength of $1.315 \mu \mathrm{~m}$. The speed of light in vacuum is $3 \times 108 \mathrm{~ms}^{-1}$
(3 marks)

Question Two

a) Define the term Statistics
b) Citing examples discuss at least FOUR probability sampling techniques
c) Discuss TWO non-probability sampling techniques. Give an example in each case
d) What is data analysis

Question Three

a) Why is graphical representation of data important?
(2 marks)
b) Define frequency as used in Statistics
c) Suppose a sample of 38 university students was asked their weight and the following data obtained:

130	108	135	120	97	110
130	112	123	117	170	124
120	133	89	130	160	126
110	135	115	127	102	130
89	135	89	137	115	110
105	130	115	100	125	120

120120
Suppose we want ' 9 ' class intervals
(i) Compute the class width
(3 marks)
(ii) Construct a frequency distribution table
(iv) With reference to the histogram, discuss results
d) What is meant by null hypothesis

Question Four

The scores of students in a Mathematics test are:

50	35	70	50	30	40
65	50	75	45	53	75
60	55	55	40	55	50

a) Find:
(i) The mean score
(ii) The standard deviation
b) Make a line plot of the scores
c) Given that the pass mark is 50 , discuss the students performance in the test
d) How would you gauge the student's performance? Explain your answer
a) Define spectroscopy
b) Differentiate between uv/vis and infra-red spectroscopy
c) Discuss FIVE basic components of an optical instrument
d) Briefly describe the working of an atomic absorption spectrophotometer

